
1

Vulnerability minimization model in web distributed
applications

ION IVAN, DRAGOS PALAGHITA, SORIN VINTURIS, MIHAI DOINEA

Informatics Economic Department
Academy of Economic Studies

Bucharest, ROMANIA
ionivan@ase.ro, dpalaghita@gmail.com, sorin.vinturis@yahoo.com,

mihai.doinea@ie.ase.ro

Abstract: The paper whishes to emphasize the importance of analyzing the vulnerabilities of a web
distributed application in order to block malicious attacks and prevent possible damage inflicted to
distributed systems. Types of vulnerabilities are analyzed with insights on the distributed aspects. An
analysis of the main vulnerabilities of authentication process is made and a model for minimizing
them is described. A risk analysis is conducted to reveal the importance of such approach.

Key-words: security, vulnerabilities, risks, optimization, distributed applications.

1. Vulnerability Types

Vulnerabilities are constituted in classes
which are susceptible to certain types of
attacks.
Authentication is the vulnerability class that
is opened to attacks that aim to corrupt
validation procedures meant to establish
the identity of application users. Here are
some ways of attack:
- brute force the method of trying all

combinations of symbols to form a
password; this is a long process that is
based on a dictionary of words. This
type of attack is hampered by:
• using complex passwords that

contain a combination of
alphanumeric characters with
symbols;

• blocking access if you have a given
number of unsuccessful login
attempts.

- exploitation of non-efficient
authentication caused by poor
programming error which allows access
to protected resources without the need
for identity verification. This type of
attack is prevented by:

• implementation of efficient
validation rules;

• form based authentication in order
to not to permit accessing a
protected page by inputting its
address.

Arbitrary code execution represents the
class of vulnerabilities that are susceptible
to remote code that is able to run on the
distributed application system. Types of
attacks related to it are:
- buffer overflow is a common method to

overwrite memory through which
system instability is obtained by writing
code on the stack according to [1] this
type of attack is prevented by using
strict length restrictions for fields that
accept input from outside the
application;

- SQL injection is represented by
inserting SQL statements that run on
the the SQL database; to avoid this
type of situation it is required to
implement meticulous validation of input
supplied by the user and not use it
directly in SQL syntax; according to [2]
SQL injection damage is prevented by
ensuring that the database system used

mailto:ionivan@ase.ro�
mailto:dpalaghita@gmail.com�
mailto:sorin.vinturis@yahoo.com�
mailto:mihai.doinea@ie.ase.ro�

2

runs with the minimum privileges and is
different from the system or SYSDBA;

- SSI injection is achieved by inserting
code in the application that is executed
on the server when the page is
delivered; the command “<- # exec cmd
= "ls" -->” lists current directory contents
in a Unix system; this type of attack is
prevented by spell checking user input
and ban them if they do not satisfy the
set character restrictions;

Vulnerabilities that disclose confidential
information make up a separate class and
are mainly caused by mismanagement of
application resources:
- existence of pages to serve

administrative purposes unprotected
from unauthorized access;

- leaks are obtained by error messages
that reveal snippets of source code
lines or phrases about database
information to the attacker and
facilitates his attempts to destabilize the
application, they are prevented by
careful examination of the data if the
information appears through an error, it
is best to treat custom errors in the
application and sanitize the output in
order to prevent data disclosure;

- editing hidden fields in the pages that
access the website properties according
to [1] altering them by changing the
page content values stored in fields
intended for internal use by the
application; such type of attack is
prevented by not using hidden controls if
necessary by blocking external access
to the values stored in them.

The security level is in a directly proportional
relationship with the degree of validation of

user inputs data. The best method of
validation is to treat all non-application
entries as bad as it diminishes the chances
to produce an attack in this way.
The human factor represents a large array of
security problems:
- using the same password in more than

one application is hazardous as it may
cause a chain reaction if one of the
applications is malicious and registers
the user account information;

- storing the password phrase in a place
that is accessible to foreign individuals
that can gain access to it; it is also
unsafe to use applications that store the
user credentials in clear text without
using any type of encryption;

- using passphrases that are directly
related to the individual like birthdays,
family name or others that are easy to
guess.

The human factor influence is reduced by
specific training on user account
management, security procedures and
computer security. It is important to point
out the risks that the individual and
organizational damage that can be inflicted
by the misinterpretation of security policies.

2. Methods for Analyzing

Vulnerabilities of Authentication
Process

Use case analysis represents the activities
undertaken to determine according to
regular use cases attack possibilities and
representing them as misuse cases for the
AVIO product.

3

Figure 1 – Misuse case AVIO

The developed analysis identifies paths that
are open to cybernetic attacks initiated by
inside or outside entities.
Figure 1 presents the result of the use case
analysis integrating attack methods that
affect AVIO standard operation. These
results of the use case analysis activities
are defined by the identification of possible
attacks on operations allowed within AVIO
by determining the situations that are
favorable to an attacker and through which
gains access to confidential information or
provokes damage to the software system.

In the use case analysis protection method
identification is done through finding means
and measures that handle the unwanted
effects of a cybernetic attack or directly
prevent it from happening. To this extent
the use case diagram is altered by adding
methods that aim to improve the security
level of AVIO. These methods are
presented in Figure 2 which presents new
elements that are meant to develop an
efficient security system by tackling attack
types identified in the use case analysis.

4

Figure 2 – Misuse case for AVIO and countermeasures

By determining the countermeasures aimed
and stopping or minimizing the effects of
informatics attack necessary information is
obtained for risk analysis and management.
The structural analysis of AVIO is
represented by planned activities in order to
determine the methods that produce attacks
by taking advantage of structural
deficiencies in AVIO.

3. Vulnerability Minimization Model

The vulnerability minimization is viewed as
a process of improvement by transforming
A into B with resource costs, but with some
performance improvements which helps the
entire system to be more efficient because:
- it uses the existing set of resources;
- achieves better quality, measured by

specialized built-in metrics.

The minimization of vulnerabilities must
have all the components required for an
optimization problem:
- input – all the information given about

the problem which need to be solved;
- output – the searched result which is

obtained by resolving the problem in
question.

These two components are represented by:
- the function VLF(𝑥) = 𝑦 defined as

𝑉𝐿𝐹:ℳ →𝒩;
- constraints over the 𝑥𝜖ℳ and 𝑓(𝑥)𝜖𝒩.
- 𝑥0𝜖ℳ for which 𝑓(𝑥0) ≤ 𝑓(𝑥) referring

to vulnerability minimization;
- 𝑥∗𝜖ℳ defined as a local minimum for

which there exists some 𝛿 > 0, so that
for ∀𝑥 such that ‖𝑥 − 𝑥∗‖ ≤ 𝛿, the
expression 𝑓(𝑥∗) ≤ 𝑓(𝑥) holds.

Minimizing the level of vulnerability for a
web based distributed application means
improving security. The minimization of

5

system’s vulnerabilities can be traced and
realized at the following levels:
- the physical level of vulnerability which

improved can increase the safety of
hardware equipments and access
areas;

- the communication vulnerability level
which can be achieved by decreasing
the degree in which sensitive
information is partially or totally
revealed to end-users;

- the authentication vulnerability level,
achieved by an adaptive algorithm
which tries to lower the number of
authentication flaws;

- the integrity vulnerability level given by
data inconsistencies which must be
checked from unauthorized access;

- the availability vulnerabilities that are
threatening the user’s access to
resources.

Minimizing the vulnerability level of a
security component, part of the security
system of a distributed application means
that a higher trustfulness in that particular
area is achieved.
In [3] is described how vulnerabilities
resulted from unsafe communication
between distributed clients can be
minimized by lowering in a simple fashion
the degree of sensitive data, DSD which is
available for access to end users.

𝐷𝑆𝐷 = 1 − 𝑇𝑆𝐷𝑃(𝐾𝑏)
𝑇𝑆𝐷(𝐾𝑏)

,
where:

TSDP – amount of sensitive information
which is protected by user’s access;

TSD – amount of total sensitive data
processed by the distributed application.
If there is none sensitive data available in
the system than there is nothing to protect.
But if the system is processing information
which shouldn’t be available to public view
than as presented in [3] we will have the
situation depicted in Table 1, resulting that
vulnerabilities can be treated through
different approaches like optimization
problem.

Table 1 – Security improvement showed by
DSD

Without
Security Relation

With
Security

TSDP0 (Kb) < TSDP1(Kb)

𝑇𝑆𝐷𝑃0(𝐾𝑏)
𝑇𝑆𝐷(𝐾𝑏)

 <
𝑇𝑆𝐷𝑃1(𝐾𝑏)
𝑇𝑆𝐷(𝐾𝑏)

1−
𝑇𝑆𝐷𝑃0(𝐾𝑏)
𝑇𝑆𝐷(𝐾𝑏)

 >
1

−
𝑇𝑆𝐷𝑃1(𝐾𝑏)
𝑇𝑆𝐷(𝐾𝑏)

The DSD indicator is getting values
between [0; 1] with:
- DSD = 0; when the total amount of

sensitive information is protected
entirely in which case TSD (Kb) = TSDP
(Kb) resulting DSD = 1 – 1 = 0;

- DSD = 1; when none of the sensitive
information is protected, meaning TSDP
(Kb) = 0 resulting:

𝐷𝑆𝐷 = 1−
𝑇𝑆𝐷𝑃(𝐾𝑏)
𝑇𝑆𝐷(𝐾𝑏)

= 1− 0 = 1.

An improvement of this metric is achieved
when its value is lowering, describing a
minimization problem.
In [4] are presented some directions for
minimizing the vulnerabilities of the
authentication process in web based
distributed system. The approach is
targeting some unique characteristics that
only a particular person, in this case the
authorized user can have them and no one
else is capable of repeating them with high
level of accuracy. Like biometric
authentication is using facial characteristics,
fingerprints matches or other individual
unique aspects, the use of user’s
characteristics that reveals patterns of how
the application is accessed in terms of
location, time, the percentage of similarity
between the password stored in the system
and the one given at the authentication time
and others unique features is meant to
improve the capability of the authentication
process to reject impersonations even when
the credentials are right.

6

Based on these aspects, a further model
can be developed which will take into
account the users behavior and compute
the characteristics into a single result for the
authentication process.
From the normal process of authentication,
a wide range of information can be
recorded about the user’s behavior such as:
- the IP addresses from which a user is

used to access the web based
distributed resources; using this
information, the dispersion can be
computed, based on which further
access addresses can be tested for
partial validity;

- the time interval in which users are
normally access the system; exceptions
can be checked more rigorously if they
happen;

- the resources that are attempted to be
accessed by users, denoting a different
behavior than usual;

- the degree of similarity between the
wrong passwords and the true one
which can denote whether is a identity
theft or a user which forgotten his
password.

The process of developing a vulnerability
minimization model for the authentication
process in a web distributed application has
the following steps:
- the process of data acquisition from

which the main characteristics used in
the later analysis are extracted;

- the process of data aggregation which
provides an important view on the
relevancy of each characteristic in the
overall frame;

- the process of model validation through
which data sets used for training will be
also used for testing the system in a

repetitive adjustment cycle until the
values obtained will be statistically
validated.

When a user tries to login the system is
found himself in the following situations:
- he is the legitimate person knowing the

password based on which he accesses
the resources available according to his
privileges;

- he forgot the password and he is trying
to access the system with different
passwords similar or not to the correct
one;

- tries to hack someone’s account by
knowing the username and having a
guess about the correct password of
the real user in this way triggering a
complete different behavior from the
other two aforementioned situations.

The final output of the minimization model is
represented by the number of password
guessing attempts.
This number is considered to be uniquely
depending on the user’s behavior as
mentioned above. The behavior is analyzed
and a possible attack rate is given to each
one of the accounts that exists on the
system, meaning that for each user is
determined a safety measure given by a
lower or a higher number of missed
passwords attempts. As the number is
lower the higher probability of a targeted
attack is assimilated with that specific user.
The flow of data gathering and processing
is made based on the sequence diagram
depicted below in Figure 3, which treats the
main possibilities on how a particular user is
interpreted by the system in order to
calculate the attack probability of a certain
login process.

7

Figure 3 – Sequence authentication diagram

Every process, part of the sequence
diagram, must be carefully analyzed
because the results returned by them will
represent the input into the following,
excepting the process of returning
privileges to user which will give access or
not to the resources designated for each
account.

4. AVIO Risk Analysis

An analysis can be made to tackle a little bit
the quality – cost efficiency of the final
model. This sort of approach takes into
consideration the advantages and
disadvantages of the implemented model
such as:
- processing resources involved in the

analysis;
- in which measure, the results returned

by the model, are improving the overall
system’s security, implicitly the
authentication process.

For the process of data acquisition the
available resources are used in order to
capture information that is already running
through the network. The process of data
aggregation can be attached to the main
process of authentication, and for each user
that is authenticated into the system or not
the process is revalidating the user’s
account in terms of trustfulness. The
process of model validation should only be
run at the beginning of system’s
implementation when the model is trained
and validated using different sets,
interchanged.
Risk analysis is a set of actions meant to
identify the main risks, Table 2, to which a
web based distributed system is exposed
analyzed from different perspectives such
as:
- online operation – the risks concerning

the services offered online to each
users;

8

- functionality aspects – risks that are
threatening the results quality of the
application;

- technologies – aspects regarding risks
that are focused on the technological

functions for providing resources to
users;

- data manipulation – the category of
risks that threat the quality information
characteristics.

.
Table 2 – AVIO risk analysis

AVIO Application Vulnerabilities Threats Risks Measures

Source

code

C# Validation Code

injection

AVIO database

manipulation

Input

validation [5]

Unsigned library Library

alteration

Library modification

and AVIO

components control

Library

signing [6]

Privileges not

verified when

calling methods

Unauthorized

access to

methods

Accessing

undisclosed

information

Protecting

methods

from

unauthorized

access [7]

Operati

on

environ

ment

IIS 7.0 Extended

protection for

authentication

Code

injection

AVIO malfunction Input

validation [5]

Windows

Server

2008 R2

x64

Authorization Instructions

execution

Availability losses

for AVIO

Input

validation [8]

ASP.NET Viewstate

management

XSS

execution

through

_VIEWSTAT

E

Unauthorized

content

modification

Input

validation [9]

CLR interface

management

Code

injection

AVIO highjacking Input

validation [5]

HTML request

management

Code

injection

AVIO availability

losses

Input

validation [5]

9

Types equality Code

injection

AVIO highjacking Input

validation [5]

SQL

Server

2008

- - - -

Exploita

tion

Interface Internal error Code

injection

AVIO highjacking Input

validation [5]

Stack exposure Information

disclosure

Gathering

information on how

to run the source

code allowing the

attacker to identify

AVIO logical

structure of source

code and focusing

attacks

Errors

management

File uploading Instructions

execution

AVIO highjacking Input

validation [8]

ASP .NET

exposure

Information

disclosure

Opportunities

growth for attack by

exploiting specific

ASP.NET version

vulnerabilities used

by AVIO application

Errors

management

, deleting

ASP version

from

retrieved

pages

Internal path

disclosure

Reveal

system

directory

structure

information

Allow attack

focusing based on

the gathered

information by

examination of

system directories.

Errors

management

10

By making a connection between
vulnerabilities and the main risks’
categories, an entire picture of the
framework in which the web based
distributed application can be constructed,
thus being possible to detect risks and
vulnerabilities that are interdependent.

5. Conclusions

Vulnerabilities in web based distributed
applications represents the main gate
through which damage can be inflicted to
such systems. There are vulnerabilities for
which risk avoidance can be achieved, but
also exists some that can’t be managed.
Authentication vulnerabilities are an
important piece from the main puzzle of
web based distributed applications security.
These must be seriously addressed due to
high severity level to which they are
assigned. If the authentication gate is
breached, access to all resources available
in the system is compromised so the entire
infrastructure can be jeopardized.
For this reason this paper intends to give a
feasible solution to how can the process of
authentication can be improved by
minimizing its weaknesses. The concept
presented is meant to be further discussed
as important feedback will be obtained from
the scientific community.

Bibliography

[1] David WATSON – Web application
attacks, Network Security, Issue 11,
November, Elsevier, 2006
[2] David MORGAN – Web application
security – SQL injection attacks, Network
security, Issue 4, Elsevier, April 2006

[3] Mihai DOINEA – Security optimization
of a distributed application for calculating
daily calories consumption, JISOM, Vol. 4,
No. 1, pp. 12-22, ISSN 1843 -4711
[4] Mihai DOINEA, Sorin PAVEL – Security
Optimization for Distributed Applications
Oriented On Very Large Data Sets,
Informatica Economica Journal, Vol. 14, No.
2, 2010, pp. 72 – 85, ISSN 1453-1305
[5] Failure to Control Generation of Code –
[Online], Available at:
http://cwe.mitre.org/data/definitions/94.html
[6] Assemblies should have valid strong
names – [Online], Available at:
http://msdn.microsoft.com/en-
us/library/ms182127(VS.80).aspx
[7] Do not indirectly expose methods with
link demands – [Online], Available at:
http://msdn.microsoft.com/en-
us/library/ms182303.aspx
[8] Improper Input Validation – [Online],
Available at:
http://cwe.mitre.org/data/definitions/20.html
[9] Improper Neutralization of Input During
Web Page Generation – [Online], Available
at:
http://cwe.mitre.org/data/definitions/79.html

Acknowledgements

This article is a result of the project
POSDRU/6/1.5/S/11 „Doctoral Program and
PhD Students in the education research
and innovation triangle”. This project is co
funded by European Social Fund through
The Sectorial Operational Programme for
Human Resources Development 2007-
2013, coordinated by The Bucharest
Academy of Economic Studies, project no.
7832, Doctoral Program and PhD Students
in the education research and innovation
triangle, DOC-ECI.

http://cwe.mitre.org/data/definitions/94.html�
http://msdn.microsoft.com/en-us/library/ms182127(VS.80).aspx�
http://msdn.microsoft.com/en-us/library/ms182127(VS.80).aspx�
http://msdn.microsoft.com/en-us/library/ms182303.aspx�
http://msdn.microsoft.com/en-us/library/ms182303.aspx�
http://cwe.mitre.org/data/definitions/20.html�
http://cwe.mitre.org/data/definitions/79.html�

