

THE HUFFMAN ALGORITHM

Student BOGDAN MORMOGEAC
Student VERONICA SCARLAT
Student ADRIAN STANCIULESCU
Faculty of Economic Cybernetics, Statistics and Informatics,
Academy of Economic Studies

1. Biography

 This method was used for the first time by Huffman in 1952 . The compression method shown
here, based on Huffman codified static trees Huffman, has certain disadvantages.
 These disadvantages due to which it is no longer actually used nowadays, have been mostly
eliminated for the methods based on dynamic Huffman trees, methods drawn upon the classic algorithm.
Their idea was that for each character codification, the Huffman tree should be reorganized so that that
character eventually is reassigned a shorter code. The differences between these dynamic methods consist
precisely of the way the tree is reorganized. The Huffman dynamic methods are able to adjust the lengths of
any character's code according to their local frequency..

After this algorithm appeared, many alternative algorithms have developed. The differences between
them and the initial standard algorithm appear generally in the phase of attributing each symbol a certain
code of bits. Among these alternatives we mention Huffman modified code, Huffman adaptive algorithm,
Fano-Shannon algorithm etc.

2. The Algorithm

Let's consider the characters of a text file, which contains a documentary written in the Romanian

language. It is easy to observe that in this text some characters like 'a', 'e' or 'i' appear more often and not so
often characters like 'z', 'w' or 'x' etc. In most of nowadays computers all the characters are being coded on
8 bits, in ASCII code. This way all the characters are occupying exactly 1 byte in the file, meaning 8 bits,
disregarding their occurrence frequency.

From here comes the idea of compression: to attribute shorter codes to the characters that appear more
often in the text and longer codes to the ones that don’t appear often. It is presented below the method of
obtaining these codes.

2.1. Generating the Huffman tree

Let's consider a text in which characters' appearing frequencies are:
r[4] e[6] g[1] i[2] t[3] a[6]

The characters are being sorted after their increasing frequencies:
g[1] i[2] t[3] r[4] e[6] a[6]

Each letter is considered to be a binary tree with a single node. After that the first two nodes from
the above sequence are taken and put together to form one tree which root will have as frequency the sum
of the frequencies of the two trees put together. Then the trees list is being sorted again. And so on until
there is only one node left which will be the root for the Huffman tree.

Let's see how the considered example will look after making these operations (fig 1):

2.2. The compression

In order to compress, the algorithm proceeds this way: the source file is being traversed and the
occurrence frequency for each of the 256 characters in ASCII code is being determined.

fseek(fisier,0,SEEK_END);
lungime = ftell(fisier); // Determining file's length
fseek(fisier,0,SEEK_SET);
for(nr=lungime;nr>0;nr-)
aparitii[getc(fisier)+255]++; // Determining characters appearing
fclose(fisier); // frequencies
for(i=0;i<256;i++) // Creating the initial 256 nodes
arbori[i]=i+255; // characters

Using these numbers the Huffman tree is being generated. Using two vectors the father and the sons of
each node are being memorized. To succeed in doing such operation first the trees are being sorted by the
occurrence frequency of each character.

void OrdoneazaArbori(void) // Sorting the characters by the frequencies
 { int i,n,max,aux;
 //Sorting method: placing maximal number at the end of the vector
 for(n=255;n>0;n--)
 { max=0;
 for(i=1;i<=n;i++)
 if (aparitii[arbori[i]]>aparitii[arbori[max]])
max=i;
 aux=arbori[max];
 arbori[max]=arbori[n];
 arbori[n]=aux; }
 }
 // NodCurent has the index for a new, yet unused node
NodCurent=255;
for(primul=0;primul<255;primul++) // The first tree in the tree list
{ NodCurent--; // The new NodCurent is being
 fii[NodCurent].fiu1=arbori[primul]; // linked to the first tree
 fii[NodCurent].fiu2=arbori[primul+1]; // and to the second
 tata[arbori[primul]]=tata[arbori[primul+1]]=NodCurent; // and to his father

// Determining the frequency for the current node
 aparitii[NodCurent]=aparitii[arbori[primul]]+aparitii[arbori[primul+1]];
 Insereaza(NodCurent,primul+2); // Placing the new node in the
} // list of sorted trees, so that the list
 // remains sorted
The procedure of adding the new node is presented below:
void Insereaza(int nod,int primul)
 { for(;(primul<256)&&(aparitii[arbori[primul]]<aparitii[nod]);primul++)
 arbori[primul-1]=arbori[primul];
 arbori[primul-1]=nod;
 }

The process of actual compression begins. For start the generated tree is being saved to the

compressed file (more exactly only the vector in which are being memorized the sons) in the purpose of
reconstructing it in the phase of decompression.

 fwrite(aparitii,sizeof(unsigned long),1,arhiva); // Saving file's length
 fwrite(fii,255*sizeof(struct NOD),1,arhiva); // Saving Huffman tree

After that, the source file is being traversed and for each character its codification used in Huffman

algorithm is being copied to the compressed file.

for(NrBiti=0;lungime>0;lungime--) // Each character
codifica(getc(fisier)+255); // is being coded

 if(NrBiti != 0) // Last bites are transferred

 putc(octet << (8 - NrBiti),arhiva); // to archive file

The procedure for codifying a character is :
void codifica(int nod)
{ int nr=0,biti[255];

 for(;nod != 0;nod=tata[nod]) // Memorizing bits towards the root
 biti[nr++]=(fii[tata[nod]].fiu2==nod);

 while(nr>0) // Getting the bites backwards(root-leaf)
 { octet = (octet << 1) + biti[--nr]; // Adding a bit in the byte

 if(++NrBiti==8) // If the byte is full it now can be written
 { putc(octet & 0x00FF,arhiva); // in the archive and reset
 NrBiti=0;
 }
 }
 }

This operation is more delicate due to the fact that the codes have an inconstant number of bites while
the procedures for writing in a file generate only a number of bits that can be divided by eight.

2.3. Decompression

Decompression is less complex than the compression. First the tree saved in the archive file in the

phase of compression is restored, using the vector that memorizes the sons.
fread(&lungime,sizeof(unsigned long),1,arhiva); // Restoring the length
fread(fii,255*sizeof(struct NOD),1,arhiva); // Restoring Huffman tree

Let’s consider a cursor initially placed on the root node of the restored tree;
successions of bites are being read from the archive file. For each 0 bit 0 the
cursor is advancing to the left son and for each 1 bit the cursor is advancing to

the right son of the current node. When the cursor reaches a node that has no
sons, the character associated to that code is generated in a destination file and
the cursor in being placed on the root node of the tree.

// While not all the original characters have been restored
 for(NrBiti=0;lungime>0;lungime--)
// it advances until the node is a leaf node
 { for(nod=0;nod<255;nod = (ExtrageBit()==0) ? fii[nod].fiu1 : fii[nod].fiu2);
 putc(nod-255,fisier); // And then it writes the character

// associated to that node
 }
Procedure ExtrageBit() is presented below :
 int ExtrageBit(void) // Returns the next bit from archive file
 { if(NrBiti--==0) // If the reception octet is empty
 { octet=getc(arhiva); // Then restore it from the archive file
 NrBiti+=8; }
 return ((octet<<=1) & 0x0100); } // Returns the bit in the left

And it continues like that until the decompression is completed.

3. Test Results

From the results shown above it is easy to observe that the Huffman algorithm has quite good
results working on files with a reduced number of characters. For the standard algorithm, the best results
are obtained working on text files (Test06.htm, Test1.doc), cursor file Test07.ani and partial on executable
files (Fig. 2).

The average compression rate is 17,63. That is due to the cases in which the number of symbols in
the alphabet is quite large. The maximal acceptable length in this algorithm's case for representing the
symbols is 12 bites.

Being faster than other algorithms, it is recommended when the compression of files is used
frequently.

4. Conclusions

The method of compression shown above, based on static codifying Huffman trees has some
disadvantages due to which it is no longer actually used nowadays. The major disadvantages are:
 a) The file that will be compressed must be traversed two times: once to calculate the number of
times each character appears, and second for the actual compression. This means that the method cannot be
used, for example, for data transmission through cable or through satellite, because in this case, the data
isn't usually memorized, which makes the resumption impossible. In the same time, the data having a
continuous flow, one cannot put an "end" to the transmission in order to build the Huffman and the actual
compression cannot be performed.
 b) The generated Huffman tree must be memorized in the archive file, which generates a
supplementary loading of the compressed code. In the case of the program
shown as an example, the tree that had been saved in the archive file occupies 1020 bytes, which means
pretty much for relatively small files. The fact that the size of the tree can be reduced should be mentioned.
 c) The method isn’t able to adjust to local characters’ frequency variations. For instance, for a text
with 1000 code 0 characters, then, 1000 code 1 characters, then 1000 code 2 characters and so on, up to
1000 code 225 characters, this text will not be compressed at all, but, on the contrary, it will be "high-
flown" due to the memorization of the tree. In spite of all this, a method that would manage to re-codify the
characters "on the way" could obtain a really good compression.
 However, these disadvantages have been mostly eliminated for the methods based on dynamic
Huffman trees, methods drawn upon the classic algorithm. Their idea was that for each character
codification, the Huffman tree be reorganized so that that character eventually is reassigned a shorter code.
The differences between these dynamic methods consist precisely of the way the tree is reorganized. The
Huffman dynamic methods are able to adjust the lengths of any character's code according to their local
frequency.

 There are advantages, too: the method is simple enough to be understood without great efforts and the
compression is implemented faster than other algorithms. It is recommended in the case of frequent
compressions.

 References

1. [Ivan98] Ion Ivan, Daniel Verniş Compresia de date, Ed. Cison,
 Bucharest, 1998
2. [Nels95] Mark Nelson, Jean-Loup Gailly The Data Compression Book Hungry Minds, Inc

2nd Edition, 1995
3. http://www.pcreport.ro/pcrep35/huffman.html

4. http://www.compressconsult.com/huffman/

5. http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/huffman.html

6. http://www.cs.duke.edu/csed/poop/huff/info/

7. http://www.arturocampos.com/ac_static_huffman.html

8. http://www.11a.nu/huffman.htm

9. http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node59.html

10. http://www.cs.uidaho.edu/~karenv/cs213/cs213.useful.pages/huffman.html

	Student BOGDAN MORMOGEAC
	Student VERONICA SCARLAT
	Student ADRIAN STANCIULESCU
	Faculty of Economic Cybernetics, Statistics and Informatics,
	Academy of Economic Studies
	

