

LZW - Data Compression

Student CRISTIANA CREŢU
Student ALINA CRISTIAN
Student ANDREEA CUCULEANU
Student ALEXANDRA FESCI
Faculty of Economic Cybernetics, Statistics and Informatics,
Academy of Economic Studies

1.History

The name of this algorithm is Lempel Ziv Welch data compression algorithm, and has been taken
from its three inventors. A. Lempel and J. Ziv published the first approach to this algorithm in 1977, in the
May number of the IEEE Transactions on Information Theory magazine within an article called “A
Universal Algorithm for Sequential Data Compression”. In this algorithm were being used fix phrases
dictionaries that were sliding on an already read text. The phrases were built starting from a symbol, and
attaching a new symbol to an already existing phrase if it was found in the dictionary.

In 1978 a new article was published in the same magazine. These two articles were presenting the
problem and the solution from a too technical and abstracted point of view.

Until 1984 no practical version of the algorithm existed on the market. In 1984 Terry Welch
publishes in June an article called “A technique for High-Performance Data Compression” in the Computer
magazine, which came with some refinements to the algorithm.

LZSS simplified the LZ77 algorithm by eliminating the restriction referring to the fact that every
symbol was formed from a code and a character. LZW does the same for the LZ78 algorithm. Actually the
LZW compressor never sends characters as such, only codes.

Because of this, the main refinement is considered to be the change of the start dictionary, which
contains, from the very beginning, the standard character set (in the first 256 locations). Thus, all one
character strings can immediately be coded, as they are already in the dictionary, even if they appeared for
the first time in the data stream. The remaining codes are assigned to streams as the algorithm proceeds. If a
dictionary uses a 12-bit code, the locations 0-255 refer to individual codes, while codes 256-4095 refer to
sub-strings.

2.Fundamentals

The main idea of this algorithm is very simple. The LZW algorithm tries to always send codes for
already known strings. Each time a new code is sent, a new string is attached to the dictionary. The
algorithm doesn’t do any analyses on the incoming text. It simply reads it and sees if the string has been
read before. If this is the first time it reads that string it adds it to the dictionary. Text is being compressed
when a code is being written instead of a string.

The start dictionary contains, as has already been said the standard character set (the ASCII
codes). To this dictionary we attach two control codes 256 and 257. The 256 code is being used as an end
of file character (the last character that appears in the text), and the 257 character is being used as an end of
dictionary character (the last character in an dictionary used only when a dictionary is full and we need to
use a new dictionary).

The advantage of this algorithm is that the LZW decompressor doesn’t need to use the dictionary
created when compressing the text. Instead it creates a new table starting from the compressed file and
using the same criteria of adding to a dictionary as for compression.

3.Compression

The compression algorithm consists of three fazes.

The first step consists in the initialization of the start dictionary. As shown above, the standard
character set is being put in the dictionary. It is also initialized the variable next_code with the next value in
the dictionary. This value will be able to grow till it riches 4095 if the program uses a 12-bit dictionary.

The next step is the main loop. In this step a new character is read from the input stream. The new
form string is looked for in the dictionary. If the string is found its code is transmitted as output. If the
string is not found, a new code is generated and added to the dictionary. This loop ends when there are no
more characters left in the input stream.

The final step is where the end of file code is generated and the compression process ends.
Here is how this compression procedure can be written. It has been published by Mark Nelson (see

the references).

next_code=256; /* Next code is the next available string code*/
 for (i=0;i<TABLE_SIZE;i++) /* Clear out the string table before starting */
 code_value[i]=-1;

 i=0;
 printf("Compressing...\n");
 string_code=getc(input); /* Get the first code */
/*
** This is the main loop where it all happens. This loop runs until all of
** the input has been exhausted. Note that it stops adding codes to the
** table after all of the possible codes have been defined.
*/
 while ((character=getc(input)) != (unsigned)EOF)
 {
 if (++i==1000) /* Print a * every 1000 */
 { /* input characters. This */
 i=0; /* is just a pacifier. */
 printf("*");
 }
 index=find_match(string_code,character); /* See if the string is in */
 if (code_value[index] != -1) /* the table. If it is, */
 string_code=code_value[index]; /* get the code value. If */
 else /* the string is not in the*/
 { /* table, try to add it. */
 if (next_code <= MAX_CODE)
 {
 code_value[index]=next_code++;
 prefix_code[index]=string_code;
 append_character[index]=character;
 }
 output_code(output,string_code); /* When a string is found */
 string_code=character; /* that is not in the table*/
 } /* I output the last string*/
 } /* after adding the new one*/
/*
** End of the main loop.
*/
 output_code(output,string_code); /* Output the last code */
 output_code(output,MAX_VALUE); /* Output the end of buffer code */
 output_code(output,0); /* This code flushes the output buffer*/
 printf("\n");

To demonstrate how this algorithm works we will use a sample shown in Figure 1. This is a
famous quote from Shakespeare’s Hamlet: ”That he is mad ‘tis true ‘tis true ‘tis pity and pity ‘tis ‘tis true”.

We can see from the very start that this is a highly redundant string. In it the word ‘tis can be found 5 times.
The output stream can be seen in the same figure.

You can see that 29 characters and 16 codes form the output, while the input stream was formed
by 66 characters. Therefore, if we were using a 9-bit dictionary, the compressed file would have had 45
bytes, while the original file would have had 66 bytes. However this was a carefully selected stream, highly
redundant. Still we can acknowledge the fact that we obtained a 45% compression rate. Still the optimal
alternative for this algorithm is obtained by using a 12-bit code dictionary. In this case figures would
change.
We must also bear in mind that while this text as carefully chosen so that the code substitution can easily be
seen in normal texts word substitution starts after a sizable table has been built. This usually happens after
at least one hundred bytes have been read.

Figure1 Example stream: “That he is mad ‘tis true ‘tis true ‘tis pity and pity ‘tis ‘tis true”

4.Decompression
The decompression sequence also has three phases.
The first step consists in the initialization of the variable old_code, which will be used to

administrate the codes attached to the dictionary. The first character is read from the previously compressed
file and sent to the decompressed file.

The second step is the main loop, which ends when the end of file character is read. The codes are
read and looked for in the dictionary. When the stream is found is sent to the output file. A new string is
formed from the old code and the first character from the string that has just been read.

The final step is when the end of file code is sent to the output file.
To see how this algorithm really works, we’ll try to decompress the output obtained by

compressing the text: “That he is mad ‘tis true ‘tis true ‘tis pity and pity ‘tis ‘tis true”. This example can be
seen in Figure 2. We can clearly see now that there is no need to keep the dictionary formed at
compression. The decompression algorithm forms its own dictionary, which is the same as the compressor
defined while compressing the text. Therefore the decoding of the text encounters no problems.

Figure 2:decompressing the text code: ”That he is mad ‘t266 tru264/273/275/277/279/272/274/267pity
an271/288/290/285/275/281/267/283e”(the “/” character has been used to divide the distinct codes; it
doesn’t appear in the compressed file.)

The decompression algorithm seems a little too simple as it has been described above. Actually there is an
exception to this algorithm. If there is a string consisting of a (string, character) pair, and the decoder finds
a combination like this: (string, character, string, character, string), the compression algorithm will output a
code before the decompression algorithm gets a chance to define it. To better understand what is happening
lets suppose that at a certain point the compression algorithm defines the string “BEAUTY” with the code
400. Later on it finds the string “BEAUTYBEAUTYBEAUTY” which it defines with the code 500(see the
table below).

When the decompressor sees this input it first decodes the code 400, and outputs the BEAUTY
string. After doing the output, it will add the definition 499 to the dictionary, which ever that might be, and
tries to output the string for the code 500. But it hasn’t defined yet this code. Here we have a problem.
What should the decompressor output?

Since this is the only time the decompression algorithm will encounter a problem we can add an
exception handler to the algorithm. This can look for undefined codes and handle the exception by
translating the value of old_code and then adds the character value. In the sample old_code is 400, its string
is BEAUTY and by adding the character B we obtain the correct string for the code 500, which is
BEAUTYB.

The decompression procedure can be written as follows. It has been published by Mark Nelson
(see the references). This procedure also includes the exception handler.

next_code=256; /* This is the next available code to define */
 counter=0; /* Counter is used as a pacifier. */
 printf("Expanding...\n");

 old_code=input_code(input); /* Read in the first code, initialize the */
 character=old_code; /* character variable, and send the first */
 putc(old_code,output); /* code to the output file */
/*
** This is the main expansion loop. It reads in characters from the LZW file
** until it sees the special code used to indicate the end of the data.
*/
 while ((new_code=input_code(input)) != (MAX_VALUE))
 {
 if (++counter==1000) /* This section of code prints out */
 { /* an asterisk every 1000 characters */
 counter=0; /* It is just a pacifier. */
 printf("*");
 }
/*
** This code checks for the special STRING+CHARACTER+STRING+CHARACTER+STRING
** case which generates an undefined code. It handles it by decoding
** the last code, and adding a single character to the end of the decode string.
*/
 if (new_code>=next_code)
 {
 *decode_stack=character;
 string=decode_string(decode_stack+1,old_code);
 }
/*
** Otherwise we do a straight decode of the new code.
*/
 else
 string=decode_string(decode_stack,new_code);
/*

** Now we output the decoded string in reverse order.
*/
 character=*string;
 while (string >= decode_stack)
 putc(*string--,output);
/*
** Finally, if possible, add a new code to the string table.
*/
 if (next_code <= MAX_CODE)
 {
 prefix_code[next_code]=old_code;
 append_character[next_code]=character;
 next_code++;
 }
 old_code=new_code;
 }
 printf("\n");

5.Results

The level of compression achieved varies depending on several factors. LZW excels when applied
to data streams that have any type of repeated streams. Therefore it has the best results when compressing
English texts. In this case a compression level of 50% or more should be expected. The same results apply
to saved screens and displays, which will generally show good results. From Figure 4 we can see that the
compression level for an avi file is 75%.

Compressing the binary files is a little bit risky. There are data sets which can give a level of compression
higher than texts, while there can be data set that offer a compression level equal to 0. From Figure 4 we
can see that for jpg, z80, and gif files we get compression level below 0.

6.References
[Ivan98] Ion Ivan , Daniel Vernis
 Compresia de date
 Editura Cison
 Bucuresti 1998
[Nels92] Nelson, Mark

La compression de données. Texte. Images. Sons
Ed. Dunod,
Paris,1992

http://dogma.net/markn/articles/lzw/lzw.htm

http://www.csu.sfu.ca/cc/365/li/squeeze/lzw.html

	Student CRISTIANA CREŢU
	Student ALINA CRISTIAN
	Student ANDREEA CUCULEANU
	Student ALEXANDRA FESCI
	Faculty of Economic Cybernetics, Statistics and Informatics,

