

RLE - Run Length Encoding

Student IONUŢ SILVIU NICULESCU
Student CĂTĂLIN BOJA
Student ALEXANDRU STANCIU
Student IONUŢ BULUMACU
Faculty of Economic Cybernetics, Statistics and Informatics,
Academy of Economic Studies

1. Principle of RLE

Run-length encoding (RLE) is a very simple form of data compression encoding. It is based on
simple principle of encoding data. This intuitive principle works best on certain data types in which
sequences of repeated data values are noticed; RLE is usually applied to the files that contain a large
number of consecutive occurrences of the same byte pattern.

In data compression are used many algorithms, some are simple ones and others are complex
algorithms. Their efficiency depends on what type of data is being compressed. The easiest algorithm used
today widely is the RLE.

The basic RLE principle is to detect sequences of repeated data values and after that to replace this
sequence with two elements:

- the number of the same characters
- the character itself

The encoding process is effective only if there are sequences of 3 or more repeating characters.

For example:
 ASCII

after RLE compression it becomes :
 ASC2I

 As you can see, in the above example we don’t have a real compression, because when we are
decoding we will do it wrong. To distinguish the replace sequence from the data that hadn’t been coded, we
use a new symbol that represents a control character. This special character, in the decoding process, will
be the start point of a sequence of compressed data. So the replacing sequence of 3 or more repeating
characters will have 3 characters:

- the special character;
- the number of repetition;
- the repeating character.

Where :

CTRL - control character which is used to indicate compression
COUNT- number of counted characters in stream of the same characters
CHAR - repeating characters.

Process of RLE starts with initialisation of character counter, repetition counter and a variable,
which represents the current character (Ch), then if all characters in file have been processed encoding
ends. If there are more characters then Ch variable is being stored in temporary variable (if ChCount equals
1), else actual character is being compared to the previous character and then result of that comparison
leads to repetition counter increment or to another comparison in which it is being tested if the number of
consecutive characters is greater than four in other words does the stream is just copied or coded according
to code word shown in Fig 1.

For example the stream:

 aaaabbbaabbbbbccccccccdabcbaaabbbbcccd

with the control character #, it becomes :

 #4a#3baa#5b#8cdabcb#3a#4b#3cd

When the character used as control character is in the stream that must to be compressed, it will be
replaced by the next sequence:

- special character;
- 0 value, because normally here it was the number of repetition
- 1 or the special character.

If a sequence of repeating control characters exists in the file that must to be compressed, it will be

coded with :

- special character;
- 1, because it is an unused value in the compression process.
- the repetition number of special character;

2. Examples of RLE Implementations

RLE algorithms are parts of various image compression techniques like BMP, PCX, TIFF, and is
also used in PDF file format, but RLE also exists as separate compression technique and file format.

2.1 CompuServe standard for RLE file format
CompuServe RLE file format standard was made in the 80's and defines the compression for 1-bit

images.
Header sequence in RLE file represents Graphic Mode Control, control is initiated when program

runs onto a sequence of three characters, those characters are
ASCII ESC (HEX 1B), ASCII G(HEX 47) and the third character is ASCII H (HEX 48) or M (HEX 4D).
Third character represents resolution, there are two possible graphics modes, and those are high resolution
graphic mode (256 x 192 pixels) represented by sequence <ESC><G><H> and medium resolution
graphic mode (128 x 96 pixels)which is represented by <ESC><G><M> sequence.
 After header sequence, data sequence starts, basic data sequence consists of a pair of run length
encoded ASCII characters. The first number represents number of the background (turned off) pixels and
the second character is the number of foreground (turned on) pixels. Each number of a pair represents the
count number of pixels plus 32 decimal, i.e. from each number 32 is subtracted and that number represents
how many next pixels will be turned on or turned off depending on what number of pair we observe.
Usually it is used ASCII ~(HEX 7E, DEC 126) as highest possible value, because some terminals interpret
ASCII character 7F HEX as <RUBOUT>, because RLE file format was used as file which was to show
graphic on terminals. Previous facts lead to conclusion that in each byte we can denote repetition of 94
pixels (126 - 32). For example pair <D><'> (HEX: 44 27, DECIMAL 68 39) means next 68 (decimal)
pixels are turned off and then 39 (decimal) pixels are turned on.
 Data in file is written in such a way that if the last pixel set was on position 254 then the next
pixel will be on the first position in next line i.e. pictures are being drawn from up to down. Let's illustrate
this with an example; if the last pixel set on line was on position 252 and data sequence consists of

pair , i.e. one background pixel and seven foreground pixels then following pixel is turned off,
then the following two pixels of current line are turned on, and then the rest of five pixels turned on, on the
beginning of the next line.

The ending sequence for RLE standard consists of three characters <ESC><G><N>, <ESC> is a
control character which ends the graphic display. Basic convention is that control character shouldn't affect
the display. All control characters should be ignored besides <ESC> and <BEL> characters, <BEL> can be
optionally used, so in some cases RLE file ending sequence consists of <BEL><ESC><G><N>. In other
words end of RLE file according to standard is <ESC><G><H> or <BEL><ESC><G><N>.

1B 47 48 - is header <ESC><G><H> and represents high resolution, first data sequence pair

 means that first pixels are all turned on, the second data sequence is the same so second 94d pixels
are also turned on (the first 188d pixels are turned on so far), and so on. Then somewhere in the file pairs
41h 36h occurs which means that next 33d pixels are turned off and after that 22d pixels are turned off, etc.
Last four character are the ending sequence which was described above.

2.2 MS Windows standard for RLE file format

MS Windows standard for RLE have the same file format as well-known BMP file format, but it's
RLE format is defined only for 4-bit and 8-bit color images.
 Two types of RLE compression is used 4bit RLE and 8bit RLE as expected the first type is used
for 4-bit images, second for 8-bit images.

 2.3 4bit RLE file format

 Compression sequence consists of two bytes; first byte (if not zero) determines number of pixels
which will be drawn. The second byte specifies two colors, high-order 4 bits (upper 4 bits) specifies the
first color, low-order 4bits specifies the second color this means that after expansion 1st, 3rd and other odd
pixels will be in color specified by high-order bits, while even 2nd, 4th and other even pixels will be in
color specified by low-order bits. If first byte is zero then the second byte specifies escape code. (See table
below)

2.4 8bit RLE file format

Sequence when compressing is also formed from 2 bytes, the first byte (if not zero) is a number of
consecutive pixels which are in color specified by the second byte.
Same as 4bit RLE if the first byte is zero the second byte defines escape code, escape codes 0, 1, 2, have
same meaning as described in Table 1, while if escape code is >=3 then when expanding the following >=3
bytes will be just copied from the compressed file, if escape code is 3 or other greater odd number then zero
follows to ensure 16bit boundary.

2.5 Example of RLE usage in other file formats

RLE scheme which will be described in this chapter is being used in PDF and TIFF file format.
RLE encoded data consists of compression sequences, one compression sequence starts with number n
(byte), this byte may be followed by 1 to 128 bytes, so this 2 to 129 bytes form one compression sequence.

If n is between 0 and 127 inclusive then following n+1 (1 to 128) bytes are just copied during
decompression. If n is between 129 and 255 inclusive then the byte which follows n is being copied 256-(n-
1) i.e. 2 to 128 times in decompressed file. If 128 occurs then we have reached the end of compressed data.

 This scheme is similar to PackBits encoding scheme known to Macintosh users.

3. Compression and Decompression Algorithm

The RLE algorithm implementation doesn’t need data structures like lists or
trees. The data structure used not only by RLE but by all compression
algorithms is the file: the source file and the destination file are the entry
parameters for the compression program and the decompression one.

3.1 Compression algorithm – RLEc.cpp

The source files are read sequentially and are used two variables to identify the streams of characters

with same value. The first variable (char OldChar) represents the first character from a run (repeating
values is called a run), and the second one (char CurrentChar) represents the current character. At the end
of a run, if the number of that character repetitions (the variable unsigned char RepetNumber is the
repetition counter) is bigger than 3, then we code the text : in the destination file we write the three byte
code word shown in Fig 1. In this case the control character is the variable char RepetCode=255, and the
variable RepetNumber is smaller than 254.

It is important to realize that the encoding process is effective only if there are sequences of 4 or
more repeating characters because three characters are used to conduct RLE so for instance coding two
repeating characters would lead to expansion and coding three repeating characters wouldn't cause
compression or expansion.

In this way we code the source text by reading it once.
Compression algorithm (and the decompression one) is implemented as a procedure that receives the

source file and the destination file.

void CompressionRLE (FILE *SourceFile, FILE *CompressedFile)
{ //...variables declaration
 fread(&OldChar,1,1,SourceFile);
 while(fread(&CurrentChar,1,1,SourceFile)==1)
 { if ((RepetNumber<254)&&(CurrentChar==OldChar)) RepetNumber++;
 else
 { if(RepetNumber>3)
 { fwrite(&RepetCode,1,1,CompressedFile);
 fwrite(&RepetNumber,1,1,CompressedFile);
 fwrite(&OldChar,1,1,CompressedFile);
 }
 else
 for (i=1;i<=RepetNumber;i++)
 fwrite(&OldChar,1,1,CompressedFile);
 RepetNumber=1;
 OldChar=CurrentChar;

 }
 }
 if(RepetNumber>3)
 { fwrite(&RepetCode,1,1,CompressedFile);
 fwrite(&RepetNumber,1,1,CompressedFile);
 fwrite(&OldChar,1,1,CompressedFile);
 }
 else
 for(i=1;i<=RepetNumber;i++) fwrite(&OldChar,1,1,CompressedFile);
}

The main program (RLEc.exe) receives the name of the source file (and optionally the name of

the destination file). The source file extension is kept in the destination file because we want
decompression process to have as result the original file.

The RLE compression process is without any information losses. At the end of the main program
we call a procedure from the library file „lib.h” that calculates the length of the two files and the
compression ratio with the formula :
CompressionRatio=100 – (DestinationLenght*100/SourceLenght)

3.2 Decompression Algorithm – RLEd.cpp

void DecompressionRLE(FILE *SourceFile,FILE *CompressedFile)
{ char RepetCode=225;
 unsigned char i,RepetNumber=1;
 char RepetChar,CurrentChar;
 while(fread(&CurrentChar,1,1,SourceFile)==1)
 { if(CurrentChar==RepetCode)
 { fread(&RepetNumber,1,1,SourceFile);
 fread(&RepetChar,1,1,SourceFile);
 for(i=1;i<=RepetNumber;i++) fwrite(&RepetChar,1,1,CompressedFile);}
 else fwrite(&CurrentChar,1,1,CompressedFile); } }

 The test files results :

4. Conclusions

 RLE is usually applied to the files that a contain large number of consecutive occurrences of the

same byte pattern.
 RLE may be used on any kind of data regardless of its content, but data that is being compressed

by RLE determines how good compression ratio will be achieved. So RLE is used on text files
which contains multiple spaces for indention and formatting paragraphs, tables and charts.
Digitised signals also consist of unchanged streams so such signals can also be compressed by
RLE. Good examples of such signal are monochrome images, and questionable compression
would be probably achieved if such compression was used on continuous-tone (photographic)
images.

 Fair compression ratio may be achieved if RLE is applied on computer generated colour images
For a monochrome image, the alphabet contains two symbols. The elements in a monochrome image can
be : 1 for white pixel, and 0 for black pixel.

For example the stream:

 000000000011111111000001111

can be compress like this :

 10 8 5 4

For this type of files we use a modified version of the algorithm. In the destination file we will have:

- the pixel that starts the sequence;
- repetition number of that pixel;
- repetition number for each color.

 If we have a sequence of more than 255 characters with the same value, it will be coded like this:

- 255;
- 0;
- repetition number – 255.

For example, the stream:

 ………0000…….0000011111…….

(we have a sequence of 300 characters with value = 0)
become after compression:

 ……….255 0 45 3…………

 RLE is a loss-less type of compression and cannot achieve great
compression ratios, but a good point of that compression is that it can be
easily implemented and quickly executed.

 We have a maximum ratio when the text to be compressed is very big
and it has only one character that is repeating.

We have a ratio equals with 0 when the text with L symbols has L different characters or L/3 runs of
different characters.

	Student IONUŢ SILVIU NICULESCU
	Student CĂTĂLIN BOJA
	Student ALEXANDRU STANCIU
	Student IONUŢ BULUMACU
	Faculty of Economic Cybernetics, Statistics and Informatics,
	Academy of Economic Studies
	1. Principle of RLE
	2. Examples of RLE Implementations
	2.1 CompuServe standard for RLE file format
	2.2 MS Windows standard for RLE file format

	2.5 Example of RLE usage in other file formats
	3. Compression and Decompression Algorithm
	3.1 Compression algorithm – RLEc.cpp
	3.2 Decompression Algorithm – RLEd.cpp

	4. Conclusions

