
 1

Solutii la examenul de Structuri de Date
din 15 ianuarie 2011, ora 10:30, sala 2104, an 3 IDD

1. Scrieti procedura pentru afisarea rezultatelor obtinute in cadrul proiectului.

Solutii:

 Daca in proiect este folosita dominant lista simpla, procedura este:

a) traversare lista simpla

void traversare(nod *cap)
{

nod *p;
float val=0;
printf("\nCod Cantitate Pret Valoare");
p=cap;
while(p)
{
printf("\n%5.2f %5.2f %5.2f %5.2f",p->cod, p->cant,p->pret,
(p->cant)*(p->pret));
val+=(p->cant)*(p->pret);
p=p->next;
}
printf("\nValoare totala=%5.2f",val);

}

unde structura nodului listei simple este:

struct nod
{
 float cod, cant, pret;
 struct nod* next;
};

Daca in proiect este folosita dominant lista dubla, procedura este:

b) traversare lista dubla

void traversare(nod *cap)
{

nod *p;
float val=0;
printf("\nCod Cantitate Pret Valoare");
p=cap;
while(p)
{
printf("\n%5.2f %5.2f %5.2f %5.2f",p->cod, p->cant,p->pret,
(p->cant)*(p->pret));
val+=(p->cant)*(p->pret);
p=p->next;
}
printf("\nValoare totala=%5.2f",val);

}

unde structura nodului listei duble este:

 2

struct nod
{
 float cod, cant, pret;
 struct nod *next, *prev;
};

Daca in proiect este folosit dominant arborele binar, procedura este:

c) traversare arbore binar

void afisInOrdine(bynarytreenode* root)
{
 if (root)
 {
 afisInOrdine(root->left);
 printf("\n ISBN = %d, price = %5.2f", root->inf->ISBN,

root->inf->price);
 afisInOrdine(root->right);
 }
}

unde structura articolului si a nodului arborelui sunt:

struct book
{
 int ISBN;
 float price;
};

struct bynarytreenode
{
 bynarytreenode* left;
 book* inf;
 bynarytreenode* right;
};

2. Scrieti procedura de stergere a unui element dintr-o matrice rara reprezentata

prin trei vectori.

Solutie:

MatriceRara stergere(MatriceRara a, int i, int j)
{
 MatriceRara b;

b.m=b.n=b.nrnenule=0;
 b.col=b.lin=b.val=NULL;

for(int k=0;k<a.nrnenule;k++)
 if((a.lin[k]==i)&&(a.col[k]==j))

{
 b.val=(int*)malloc((a.nrnenule-1)*sizeof(int));

b.col=(int*)malloc((a.nrnenule-1)*sizeof(int));
 b.lin=(int*)malloc((a.nrnenule-1)*sizeof(int));
 b.m=a.m;
 b.n=a.n;
 b.nrnenule=a.nrnenule-1;

for(int k1=0;k1<k;k1++)
{

 3

b.lin[k1]=a.lin[k1];
b.col[k1]=a.col[k1];
b.val[k1]=a.val[k1];

}
for(int k2=k;k2<a.nrnenule-1;k2++)
{

b.lin[k2]=a.lin[k2+1];
b.col[k2]=a.col[k2+1];
b.val[k2]=a.val[k2+1];

}
}

return b;
}

unde structura matrice rara, reprezentata prin trei vectori este:

struct MatriceRara
{
 int *val;
 int *lin;
 int *col;
 int m;
 int n;
 int nrnenule;
};

3. Scrieti procedura pentru concatenarea a cinci liste simple.

Solutie:

 Concatenarea a doua liste:

nod* concatenare(nod *cap1, nod *cap2)
{
 nod *cap3;
 if ((cap1==NULL)&&(cap2==NULL)) cap3=NULL;
 else if ((cap1!=NULL)&&(cap2==NULL)) cap3=cap1;
 else if ((cap1==NULL)&&(cap2!=NULL)) cap3=cap2;
 else
 {
 nod *p;
 for (p=cap1;p->next;p=p->next);
 p->next=cap2;
 cap3=cap1;
 }
 return cap3;
}

Apel concatenare doua liste:

cap1=concatenare(cap1, cap2);
cap1=concatenare(cap1, cap3);
cap1=concatenare(cap1, cap4);
cap1=concatenare(cap1, cap5);

unde structura nodului listei simple este:

 4

struct nod
{
float cod,cant,pret;
struct nod* next;
};

4. Scrieti procedura pentru calculul valorii stocului final al unui material pentru

care este dat codul intr-un arbore binar.

Solutie:

 Cautare recursiva a materialului cu un anumit cod:

bynarytreenode* cauta_recursiv(bynarytreenode* root, int cheie)
{
 if (root)
 {
 if (cheie==root->info.cod) return root;
 else if (cheie<root->info.cod)

cauta_recursiv(root->left,cheie);
 else cauta_recursiv(root->right,cheie);
 }
 else return NULL;
}

 Apel cautare recursiva si calcul valoare stoc final, determinata astfel:

val_stoc_final = (stoc_initial + intrari – iesiri)*pret;

int cod;
printf("\n Codul de cautat = ");
scanf("%d",&cod);
bynarytreenode* cautat = NULL;
cautat=cauta_recursiv(r,cod);
if (cautat) printf("\n Materialul cu codul %d are stocul initial %d,
intrari %d, iesiri %d, pret %5.2f, valoare stoc final %5.2f",
cautat->info.cod, cautat->info.stoc_initial, cautat->info.intrare,
cautat->info.iesire, cautat->info.pret, (cautat->info.stoc_initial +
cautat->info.intrare - cautat->info.iesire)*cautat->info.pret);
else printf("\n Cod negasit!");

unde structura articolului si a nodului arborelui sunt:

struct material
{
 int cod;
 int stoc_initial;
 int intrare;
 int iesire;
 float pret;
};

struct bynarytreenode
{
 material info;
 bynarytreenode *left, *right;

 5

};

5. Scrieti procedura care permite traversarea unei liste duble in ambele sensuri,

la alegere.

Solutie:

void afisare(nod *p)
{
 printf("\n%5.2f %5.2f %5.2f %5.2f",p->pr.cod, p->pr.cant,

p->pr.pret,p->pr.val);
}

void traversare(nod *prim, nod* ultim, int directie)
{
 nod *p;
 printf("\nCod Cantitate Pret Valoare");
 if (directie==0)
 {
 p=prim;
 while(p)
 {
 afisare(p);
 p=p->next;
 }
 }
 else if (directie==1)
 {
 p=ultim;
 while(p)
 {
 afisare(p);
 p=p->prev;
 }
 }
}

unde structura articolului si a nodului listei duble sunt:

struct produs
{
 float cod,cant,pret,val;
};

struct nod
{
 produs pr;
 struct nod *prev, *next;
};

6. Scrieti procedura pentru alegerea minimului sau maximului dintre elementele

unei structuri de date, la alegere.

Solutie:

 6

 Determinare element cu cod minim sau cod maxim din vectorul de produse cu n

componente:

int min_max(produs *p, int n, int vs)
{

int min, max, result;
if (vs==0)
{

min=p[0].cod;
for (int i=1;i<n;i++) if (min>p[i].cod) min=p[i].cod;
result=min;

}
else if (vs==1)
{

max=p[0].cod;
for (int i=1;i<n;i++) if (max<p[i].cod) max=p[i].cod;
result=max;

}
else result=0;

return result;
}

unde structura articolului este:

struct produs
{
 int cod;
 float cantitate;
 float pret;
};

7. Scrieti procedura care preia informatia utila dintr-un arbore binar si o copiaza

intr-o lista simpla.

Solutie:

 Inserare element in lista simpla:

listnode* inserare(listnode* cap, book *b)
{
 listnode* nou = (listnode*)malloc(sizeof(listnode));
 listnode* temp;
 nou->inf=b;
 nou->next=NULL;
 if (cap==NULL) return nou;
 temp=cap;
 while (temp->next) temp=temp->next;
 temp->next=nou;
 return cap;
}

 Procedura conversie arbore binar – lista simpla:

listnode* cap = NULL;

void bynarytree_to_list(bynarytreenode *root)
{
 if (root)

 7

 {
 cap=inserare(cap, root->inf);
 bynarytree_to_list(root->left);
 bynarytree_to_list(root->right);
 }
}

unde structura articolului, a nodului arborelui si a nodului listei simple sunt:

struct book
{
 int ISBN;
 float price;
};

struct bynarytreenode
{
 bynarytreenode* left;
 book *inf;
 bynarytreenode* right;
};

struct listnode
{
 book *inf;
 listnode *next;
};

8. Indicati trei argumente care sa justifice alegerea structurii de date dinamice

din proiect.

Solutie:

Primul argument este legat de operatiile care se realizeaza cu structura de date

dinamica. Cel de-al doilea argument se refera la volumul de prelucrari. Al treilea argument

este legat de existenta bibliotecilor de proceduri care folosesc respectiva structura de date

dinamica.

9. Aratati care a fost eroarea de compilare cea mai frecvent intalnita cand ati

scris programele din proiect, specificati cauze si aratati cum ati efectuat corectiile.

Solutie:

Se prezinta una dintre erorile de sintaxa care presupun corectii pe textul sursa din

punct de vedere al limbajului de programare. Se descrie una dintre erorile de logica a

programarii care necesita corectii severe in cadrul expresiilor.

 8

10. Scrieti o procedura de creare a unei structuri de date existenta in proiectul

elaborat.

Solutii:

 Daca structura de date este arborele binar, procedura este:

a) creare nod arbore binar

bynarytreenode* createnode(student stud, bynarytreenode *l, bynarytreenode
*r)
{
 bynarytreenode *temp;
 temp=(bynarytreenode*)malloc(sizeof(bynarytreenode));
 (*temp).info.cod=stud.cod;
 temp->info.nume=(char*)malloc((strlen(stud.nume)+1)*sizeof(char));
 strcpy(temp->info.nume,stud.nume);
 temp->info.varsta=stud.varsta;
 temp->left=l;
 temp->right=r;
 return temp;
}

unde structura articolului si a nodului arborelui sunt:

struct student
{
 int cod;
 char* nume;
 int varsta;
};

struct bynarytreenode
{
 student info;
 bynarytreenode *left, *right;
};

Daca structura de date este lista dubla cu n noduri, procedura este:

b) creare lista dubla cu n noduri

nod* crearelista(nod *cap, int n)
{
 nod *p, *q;
 float cod1,cant1,pret1;
 citire(&cod1,&cant1,&pret1);
 cap=(nod*)malloc(sizeof(nod));
 //
 //fiecare pune atribuirile care se potrivesc problemei rezolvate
 //
 cap->pr.cod=cod1;
 cap->pr.cant=cant1;
 cap->pr.pret=pret1;
 cap->prev=NULL;
 cap->next=NULL;
 p=cap;
 for (int i=1;i<n;i++)
 {
 citire(&cod1,&cant1,&pret1);
 q=(nod*)malloc(sizeof(nod));

 9

 q->pr.cod=cod1;
 q->pr.cant=cant1;
 q->pr.pret=pret1;
 q->next=NULL;
 q->prev=p;
 p->next=q;
 p=q;
}
return cap;
}

unde structura articolului si a nodului listei sunt:

struct produs
{
 float cod, cant, pret;
};

struct nod
{
 produs pr;
 struct nod *prev, *next;
};

