Solutii la examenul de Structuri de Date
din 15 ianuarie 2011, ora 10:30, sala 2104, an 3 IDD

1. Scrieti procedura pentru afisarea rezultatelor obtinute in cadrul proiectului.
Solutii:
Daca in proiect este folosita dominant lista simpla, procedura este:

a) traversare lista simpla

void traversare (nod *cap)
{
nod *p;
float val=0;
printf ("\nCod Cantitate Pret Valoare");
p=cap;
while (p)
{
printf ("\n%5.2f %5.2f %5.2f %5.2f",p->cod, p->cant,p->pret,
(p—>cant) * (p->pret)) ;
val+=(p->cant) * (p->pret) ;
pP=p->next;
}
printf ("\nValoare totala=%5.2f",val);

unde structura nodului listei simple este:

struct nod

{
float cod, cant, pret;
struct nod* next;

};
Daca in proiect este folosita dominant lista dubla, procedura este:

b) traversare lista dubla

void traversare (nod *cap)
{
nod *p;
float val=0;
printf ("\nCod Cantitate Pret Valoare");
p=cap;
while (p)
{
printf ("\n%5.2f %5.2f %5.2f %5.2f",p->cod, p->cant,p->pret,
(p—>cant) * (p->pret)) ;
val+=(p->cant) * (p->pret) ;
pP=p->next;
}
printf ("\nValoare totala=%5.2f",val);

unde structura noduluti listei duble este:



struct nod

{
float cod, cant, pret;
struct nod *next, *prev;

}i
Daca in proiect este folosit dominant arborele binar, procedura este:

¢) traversare arbore binar

void afisInOrdine (bynarytreenode* root)

{
if (root)
{
afisInOrdine (root->left) ;
printf ("\n ISBN = %d, price = %5.2f", root->inf->ISBN,
root->inf->price) ;
afisInOrdine (root->right) ;

unde structura articolului si a nodului arborelui sunt:

struct book

{
int ISBN;
float price;

};

struct bynarytreenode

{
bynarytreenode* left;
book* inf;
bynarytreenode* right;

2. Scrieti procedura de stergere a unui element dintr-o matrice rara reprezentata
prin trei vectori.

Solutie:

MatriceRara stergere (MatriceRara a, int i, int j)
{
MatriceRara b;
b.m=b.n=b.nrnenule=0;
b.col=b.lin=b.val=NULL;
for (int k=0;k<a.nrnenule;k++)
if((a.lin[k]==i)&&(a.col[k]==3]))
{
.val=(int*)malloc((a.nrnenule-1) *sizeof (int)) ;
.col=(int*)malloc((a.nrnenule-1) *sizeof (int)) ;
.lin=(int*)malloc((a.nrnenule-1) *sizeof (int)) ;
.m=a.m;
.n=a.n;
.nrnenule=a.nrnenule-1;
for (int k1=0;kl<k;kl++)
{

oo oo o



b.lin[kl]=a.lin[kl];
b.col[kl]=a.col[kl];
b.val[kl]=a.val[kl];

}

for (int k2=k;k2<a.nrnenule-1;k2++)

{
b.lin[k2]=a.lin[k2+1];
b.col[k2]=a.col[k2+1];
b.val[k2]=a.val[k2+1];

}

return b;

}
unde structura matrice rara, reprezentata prin trei vectori este:

struct MatriceRara
{

int *val;

int *1lin;

int *col;

int m;

int n;

int nrnenule;

3. Scrieti procedura pentru concatenarea a cinci liste simple.
Solutie:

Concatenarea a doua liste:

nod* concatenare (nod *capl, nod *cap2)
{
nod *cap3;
if ((capl==NULL) && (cap2==NULL)) cap3=NULL;
else if ((capl!=NULL) && (cap2==NULL)) cap3=capl;
else if ((capl==NULL) && (cap2!=NULL)) cap3=cap2;
else
{
nod *p;
for (p=capl;p->next;p=p->next);
p->next=cap2?2;
cap3=capl;
}

return cap3;

Apel concatenare doua liste:

capl=concatenare (capl, cap2);
capl=concatenare (capl, cap3);
capl=concatenare (capl, cap4)
capl=concatenare (capl, cap5):;

unde structura nodului listei simple este:




struct nod

{

float cod,cant,pret;
struct nod* next;

};

4. Scrieti procedura pentru calculul valorii stocului final al unui material pentru
care este dat codul intr-un arbore binar.

Solutie:

Cautare recursiva a materialului cu un anumit cod:

bynarytreenode* cauta_recursiv (bynarytreenode* root, int cheie)
{
if (root)
{
if (cheie==root->info.cod) return root;
else if (cheie<root->info.cod)
cauta_recursiv(root->left,cheie);
else cauta_recursiv(root->right,cheie);
}
else return NULL;

Apel cautare recursiva si calcul valoare stoc final, determinata astfel:
val stoc final = (stoc_initial + intrari — iesiri)*pret;

int cod;

printf ("\n Codul de cautat = ");

scanf ("%d", &cod) ;

bynarytreenode* cautat = NULL;

cautat=cauta_recursiv(r,cod) ;

if (cautat) printf("\n Materialul cu codul %d are stocul initial %d,
intrari %d, iesiri %d, pret %5.2f, valoare stoc final %5.2f",
cautat->info.cod, cautat->info.stoc_initial, cautat->info.intrare,
cautat->info.iesire, cautat->info.pret, (cautat->info.stoc_initial +
cautat->info.intrare - cautat->info.iesire)*cautat->info.pret);

else printf("\n Cod negasit!");

unde structura articolului si a nodului arborelui sunt:

struct material
{
int cod;
int stoc_initial;
int intrare;
int iesire;
float pret;
}s

struct bynarytreenode

{
material info;
bynarytreenode *left, *right;



5. Scrieti procedura care permite traversarea unei liste duble in ambele sensuri,
la alegere.

Solutie:

void afisare(nod *p)

{
printf ("\n%5.2f %5.2f %5.2f %5.2f",p->pr.cod, p->pr.cant,
p->pr.pret,p->pr.val) ;

void traversare(nod *prim, nod* ultim, int directie)
{
nod *p;
printf ("\nCod Cantitate Pret Valoare");
if (directie==0)
{
pP=prim;
while (p)
{
afisare(p);
pP=p->next;
}
}
else if (directie==1l)
{
p=ultim;
while (p)
{

afisare(p);
p=p->prev;

unde structura articolului si a nodului listei duble sunt:

struct produs

{

float cod,cant,pret,val;

};

struct nod
{
produs pr;
struct nod *prev, *next;

};

6. Scrieti procedura pentru alegerea minimului sau maximului dintre elementele
unei structuri de date, la alegere.

Solutie:



Determinare element cu cod minim sau cod maxim din vectorul de produse cu n
componente:

int min_max(produs *p, int n, int vs)
{
int min, max, result;
if (vs==0)
{
min=p[0].cod;
for (int i=1;i<n;i++) if (min>p[i].cod) min=p[i].cod;
result=min;
}
else if (vs==1)
{
max=p[0] .cod;
for (int i=1;i<n;i++) if (max<p[i].cod) max=p[i] .cod;
result=max;
}
else result=0;
return result;

}

unde structura articolului este:

struct produs

{
int cod;
float cantitate;
float pret;

7. Scrieti procedura care preia informatia utila dintr-un arbore binar si o copiaza
intr-o lista simpla.

Solutie:

Inserare element in lista simpla:

listnode* inserare(listnode* cap, book *b)
{
listnode* nou = (listnode*)malloc(sizeof(listnode)) ;
listnode* temp;
nou->inf=b;
nou->next=NULL;
if (cap==NULL) return nou;
temp=cap;
while (temp->next) temp=temp->next;
temp->next=nou;
return cap;

Procedura conversie arbore binar — lista simpla:

listnode* cap = NULL;

void bynarytree to_ list(bynarytreenode *root)

{

if (root)



cap=inserare (cap, root->inf);
bynarytree_ to_list(root->left);
bynarytree to_list(root->right);

unde structura articolului, a nodului arborelui si a nodului listei simple sunt:

struct book

{
int ISBN;
float price;

};

struct bynarytreenode

{
bynarytreenode* left;
book *inf;
bynarytreenode* right;
}i

struct listnode

{
book *inf;
listnode *next;

};

8. Indicati trei argumente care sa justifice alegerea structurii de date dinamice
din proiect.

Solutie:

Primul argument este legat de operatiile care se realizeaza cu structura de date
dinamica. Cel de-al doilea argument se refera la volumul de prelucrari. Al treilea argument
este legat de existenta bibliotecilor de proceduri care folosesc respectiva structura de date
dinamica.

9. Aratati care a fost eroarea de compilare cea mai frecvent intalnita cand ati
scris programele din proiect, specificati cauze si aratati cum ati efectuat corectiile.

Solutie:
Se prezinta una dintre erorile de sintaxa care presupun corectii pe textul sursa din

punct de vedere al limbajului de programare. Se descrie una dintre erorile de logica a
programarii care necesita corectii severe in cadrul expresiilor.




10. Scrieti o procedura de creare a unei structuri de date existenta in proiectul
elaborat.

Solutii:

Daca structura de date este arborele binar, procedura este:
a) creare nod arbore binar

bynarytreenode* createnode (student stud, bynarytreenode *1, bynarytreenode
*r)
{
bynarytreenode *temp;
temp= (bynarytreenode*)malloc(sizeof (bynarytreenode)) ;
(*temp) .info.cod=stud.cod;
temp->info.nume=(char*)malloc((strlen(stud.nume)+1) *sizeof (char)) ;
strcpy (temp->info.nume, stud.nume) ;
temp->info.varsta=stud.varsta;
temp->left=1;
temp->right=r;
return temp;

unde structura articolului si a nodului arborelui sunt:

struct student

{
int cod;
char* nume;
int varsta;

};

struct bynarytreenode
{

student info;

bynarytreenode *left, *right;
};

Daca structura de date este lista dubla cu » noduri, procedura este:

b) creare lista dubla cu » noduri

nod* crearelista(nod *cap, int n)
{
nod *p, *q;
float codl,cantl,pretl;
citire(&codl, &cantl, &pretl) ;
cap=(nod*)malloc (sizeof (nod)) ;
//
//fiecare pune atribuirile care se potrivesc problemei rezolvate
//
cap->pr.cod=codl;
cap->pr.cant=cantl;
cap->pr.pret=pretl;
cap->prev=NULL;
cap->next=NULL;
p=cap;
for (int i=1l;i<n;i++)
{
citire (&codl, &cantl, &pretl) ;
g=(nod*)malloc(sizeof (nod)) ;



g->pr.cod=codl;
g->pr.cant=cantl;
g->pr.pret=pretl;
gq->next=NULL;
q->prev=p;
pP->next=q;
P=q;

}

return cap;

}

unde structura articolului si a nodului listei sunt:

struct produs

{

float cod, cant, pret;

};

struct nod
{
produs pr;
struct nod *prev, *next;

};




