34. INSPECTIA SOFTWARE

34.1 Auditul informatic

In prezent, utilizarea calculatorului si a programelor informatice a
devenit un element vital 1in cadrul sistemului informational al
intreprinderilor. Odata cu integrarea noilor tehnologii informationale in
procesele de prelucrare, transmitere si stocare a datelor, au aparut o serie
de amenintari si vulnerabilitati ale sistemului informational. Astfel,
managerii si-au pus problema garantarii corectitudinii si securitatii
operatiilor din sistemul informatic si convergentei acestora cu obiectivele si
strategiile organizatiei.

Pentru a contracara aceste aspecte negative s-a impus elaborarea
unor proceduri de control a sistemelor informationale la nivelul fiecarei
intreprinderi. Aceste obiective si proceduri de control intern au ca scop
asigurarea securitatii sistemelor informationale si reducerea riscului pe care
I-ar putea avea orice amenintare si vulnerabilitate asupra sistemului.

In literatura si practica din Romania se intalnesc termenii de auditul
sistemelor informationale, auditul sistemelor informatice sau auditul
informatic, auditul IT. Diferenta conceptuala dintre acesti termeni este data
pe de o parte de continutul si nivelul la care se desfasoara activitatea de
audit si pe de alta parte de diferenta conceptuala dintre notiunile de sistem
informational si sistem informatic. Astfel, auditul sistemului informational
este, conceptual, cel mai cuprinzator, acoperind prin obiectivele sale toate
nivelurile sistemului informational, de la evaluarea proiectarii si utilizarii
sistemului informatic, pana la evaluarea politicilor si procedurilor de
securitate de la nivelul operational si strategic. Auditul sistemului informatic,
respectiv auditul informatic, acopera prin obiectivele sale doar sistemul
informatic.

Auditul informatic se refera la evaluarea riscurilor informatice ale
securitatii fizice, securitatea logica, managementul schimbarilor, planul de
asistenta etc. In cazul general auditul informatic reprezinta un ansamblu de
procese informatice pentru a raspunde la o cerere precisa a clientului.

Principalele tipuri de audit informatic sunt [Ivan05]:

— auditul sistemului operational de calcul - se refera la revizia
controalelor sistemelor operationale de calcul si retelelor, la
diferite niveluri: sistem de operare, retea, software de aplicatie,
baze de date;

— auditul instalatiilor IT - este legat de securitatea fizica,
controalele mediului de lucru, sistemele de management si
echipamentele IT;

— auditul sistemelor aflate in dezvoltare, care se ocupa cu
controalele managementului proiectului, specificatiile,
dezvoltarea, testarea, implementarea si operarea controalelor
tehnice si procedurale;

— auditul managementului IT - include revizia organizatiei,
structurii, strategiei, planificarii muncii, planificarii resurselor,
stabilirii bugetului, controlul costurilor etc;

— auditul procesului IT - cuprinde revederea proceselor care au loc
in cadrul IT cum sunt dezvoltarea aplicatiei, testarea,
implementarea, operatiile, mentenanta, gestionarea incidentelor;

- auditul managementului schimbarilor - se ocupa cu verificarea
planificarii si controlului schimbarilor la sisteme, retele, aplicatii,
procese etc., cuprinde managementul configuratiei, controlul
codului de la dezvoltare, prin testare, la productie si
managementul schimbarilor;

— auditul controlului si securitatii informatiilor - se refera la
verificarea controalelor referitoare la confidentialitatea,
integritatea si disponibilitatea sistemelor si datelor;

— auditul conformitdtii cu legalitatea - include copyright,
conformitate cu legislatia, protectia datelor personale;

- auditul accidentelor dezastruoase/planificarii continuitatii
afacerii/refacerii dupd dezastre - cuprinde reviziile masurilor
propuse pentru restaurarea dupa un dezastru care afecteaza
sistemul si verificarea modului in care organizatia abordeaza
managementul riscurilor;

— auditul strategiei IT - include revizia aspectelor variate ale
strategiei IT, viziune si planuri, precum si relatiile cu alte
strategii, viziuni si planuri.

Un loc important in cadrul auditului informatic il ocupa inspectia

software.

34.2 Necesitatea si obiectivele inspectiei software

Calitatea constituie un tel principal in industria software. Incd se
manifesta parerea ca nu exista un mijloc eficient pentru imbunatatirea
calitatii fara lungirea ciclului de dezvoltare si/sau cresterea costurilor.
Incadrarea asigurdrii calitdtii software fintr-un program si un buget
prestabilite este aproape imposibil de realizat. Scurtarea ciclului de
dezvoltare, limitarea resurselor si cresterea complexitatii software duc la o
scadere a calitatii sale si la cresterea numarului de defecte. Impactul
economic al defectelor este deosebit. Ele reprezinta principala cauza a
esuarii aplicatiilor si provoaca pagube insemnate atat utilizatorilor cat si
organizatiei dezvoltatoare.

Este posibil ca anumite defecte si vulnerabilitati sa treaca
neobservate, inclusiv in etapa de testare, mai ales cand consecintele lor nu
sunt atat de vizibile. Ele pot ramane nedetectate pana in etapele de
implementare si de exploatare cand, pentru remedierea lor, sunt necesare
resurse suplimentare foarte mari.

Un mijloc important pentru cresterea calitatii unui produs software il
constituie Tmbunatatirea testarii sale. Testarea este recunoscuta ca un punct
critic in asigurarea calitatii totale, dar are limitele ei, precum:

- crearea, executia, validarea si intretinerea seturilor de date si a

procedurilor de testare este scumpa si consumatoare de timp;

— gradul de acoperire - procentul de instructiuni testate - scade

considerabil pe masura cresterii complexitatii produsului;

- adesea poate fi dificila si de durata determinarea cauzei reale

care provoaca o eroare, astfel incat dezvoltatorii sa localizeze
exact secventa de cod ce trebuie modificata;

— testarea nu poate acoperi toate bug-urile posibile - studii
realizate In acest sens arata ca, de obicei, testarea duce la
inlaturarea a mai putin de 50% din defecte; chiar si cele mai bune
procese de testare nu inlatura mai mult de 85% din defecte

_ [Reas*x*].

In concluzie, desi testarea este o etapa importanta in asigurarea
calitatii unui produs software, nu reprezinta un panaceu. Testarea singura
nu poate garanta eliminarea tuturor defectelor si nici nu asigura un nivel
suficient de Tnalt al calitatii.

“Testarea nu se termina niciodata, este doar abandonata” [OneiO1la].
Pentru a intelege acest citat trebuie facuta distinctia intre conceptul de cod
si cel de acoperire. Chiar daca este asigurata intreaga acoperire a codului,
acest lucru nu garanteaza inlaturarea tuturor defectelor. Testarea completa
cere acoperirea tuturor ramurilor, nu numai a instructiunilor ca atare.
Acoperirea tuturor ramurilor este mai dificil de realizat decat acoperirea
totald a codului. Codul unui sistem complex poate contine milioane de
ramuri. Chiar daca ar fi posibila construirea unui sistem complet de testare,
timpul si costul necesar executiei ar fi prohibite.

Deoarece testarea nu asigura acoperirea totala si necesita
dezvoltarea de instrumente scumpe, sunt necesare alte tehnici pentru
asigurarea unei inalte calitati a produselor software. Una dintre aceste
tehnici este inspectia software, care acopera multe din limitele testarii.

Inspectia software este un proces de revizuire tehnica realizat de-a
lungul etapelor de dezvoltare a produselor, cu scopul de a identifica si
elimina defectele. Ea se poate aplica oricarui produs rezultat in diversele
etape ale procesului de dezvoltare: determinarea cerintelor, proiectare,
codificare, chiar si in etapa de testare.

Comunitatea dezvoltatorilor de software stie de mult cad inspectia
software constituie o tehnica eficienta pentru inlaturarea defectelor, cu
beneficii substantiale pe termen lung. Inspectia software este benefica
deoarece identifica si inlatura erorile critice inca din primele etape ale
ciclului de dezvoltare, inainte de a se ajunge in etapa de testare sau
implementare.

Inspectia software - procesul de examinare a fiecarei linii a codului
sursa pentru identificarea defectelor si vulnerabilitatilor - este o practica
obisnuita in multe organizatii. Ea are ca scop detectarea si corectarea
defectelor si prevenirea propagarii lor de-a lungul ciclului de dezvoltare.

Specialistii cu experienta stiu ca dezvoltarea produselor software este
un proces de experimentare care implica descoperirea continua de
informatii tehnice asociate cu functionalitatea, forma si corectitudinea
produsului. Inspectia software reprezintd o practica integratd in acest
proces de experimentare. Ea eficientizeaza etapele de dezvoltare si testare
prin reducerea efectelor cauzate de defecte si vulnerabilitati, in paralel cu
cresterea nivelurilor de securitate, integritate, incredere, disponibilitate,
viabilitate si mentenanta ale produsului.

Inspectia software este o tehnica de detectare a defectelor din
produsele software inainte ca acestea sa fie implementate. Ea a fost
introdusa la compania IBM de catre Michael Fagan in 1976 [Faga76], cu
scopul de a imbunatatii calitatea produselor software si de a creste
productivitatea. De atunci s-a dezvoltat continuu si se refera la un proces
structurat prin care se incearca identificarea defectelor in documentele
intocmite in diversele etape ale procesului de dezvoltare. Procesul de

dezvoltare a produselor software consta dintr-o serie de etape care se
finalizeaza cu un anumit produs: definirea cerintelor, proiectare, codificare,
testare si mentenantd. Identificarea defectelor este necesar sa se faca cat
mai devreme posibil, deoarece costurile de remediere a unui defect sunt de
10 pana la 100 ori mai mici in primele etape fata de remedierea lor in etapa
de mentenanta. Acest lucru se realizeaza prin inspectarea iesirilor din
fiecare etapa in parte si compararea lor cu cerintele corespunzatoare, sau
prin indeplinirea unui criteriu de terminare a etapei respective.

Inspectia este cea mai eficienta metoda de evaluare software si se
deosebeste de alte forme de evaluare prin aceea ca este un proces riguros,
bine definit pentru examinarea in detaliu a produselor software si
identificarea defectelor lor. Numita si inspectie Fagan sau inspectie formalg,
ea defineste un proces ca fiind o activitate specifica cu criterii de intrare si
de iesire predefinite. Criteriile de intrare sunt cerintele ce trebuie indeplinite
pentru a se incepe un anumit proces, iar criteriile de iesire sunt cerintele ce
trebuie indeplinite pentru terminarea procesului. Pentru fiecare activitate,
inspectia software stabileste dacd iesirea din proces este conforma cu
criteriile de iesire aferente procesului [Faga86]. Orice abatere de la aceste
criterii este considerata un defect.

Inspectia software sau evaluarea codului este o examinare vizuala a
codului sursa cu scopul identificarii defectelor si/sau nerespectarii
standardelor de codificare. Ea urmadreste garantarea completitudinii si
corectitudinii codului sursa si asigurarea faptului ca implementarea codului
este In concordanta cu specificatiile software. In acest fel se asigura
eliminarea erorilor inca din fazele incipiente ale ciclului de dezvoltare si
cresterea calitatii produselor software.

Este important de subliniat faptul ca inspectia software nu este
acelasi lucru cu testarea, desi ambele urmaresc asigurarea unei inalte
calitati a produsului, intre ele existand anumite diferente, dintre care se pot
aminti:

- cand se testeaza, se executa cod; cand se inspecteaza, se

evalueaza cod;

- testarea se face in etapa de testare; inspectia software se face in
etapa de codificare, dar si in etapele anterioare (determinarea
cerintelor, proiectare);

— prin testare nu se parcurg toate ramurile programului; prin
inspectie software se descopera defecte pe ramuri executate
foarte rar si putin probabil de inclus in strategia de testare;

— defectele identificate in etapa de inspectie software sunt
inlaturate imediat; testarea se caracterizeaza printr-o abordare
seriald: intai se observa efectele, apoi se cauta cauza pentru
inlaturarea ei;

- inspectia software nu executa cod, deci este independenta de
hardware, nu cere resurse sistem sau modificari in
comportamentul programului si poate fi aplicata cu mult timp
inainte ca resursele hardware sa fie disponibile pentru testare.

In figura 34.1 se prezint3 incadrarea inspectiei in ciclul de dezvoltare

a produsului software.

Etape ale
ciclului de
dezvoltare

A 4
"1 Inspectie

l

Produsul DA
respecta —_
specifica- Integrare

tiile?

NU

y

[v
Continuare proces COStljll”l
dezvoltare ma-l Testare
mari?

Abandonare

Figura 34.1 Locul inspectiei in ciclul de dezvoltare a software.

Inspectia software implica interactiunea urmatoarelor elemente:

— etapele inspectiei software;

— rolurile participantilor;

— colectia de procese si date;

— produsul inspectat;

— infrastructura corespunzatoare.

Ea ajuta organizatiile producatoare de software sa realizeze produse
mai bune. Prin aplicarea ei in fiecare etapa a ciclului de dezvoltare, se
asigura o baza tehnica corectd pentru etapele urmatoare. Descoperirea si
corectarea timpurie a defectelor reduce resursele necesare pentru depanare
in etapele ulterioare ale proiectului, ducand la reducerea costurilor totale de
realizare a produsului. Rezultatele obtinute la compania IBM [Faga86] arata
cd pot fi detectate 80-90% din defecte, obtinandu-se o reducere cu pana la
25% a costurilor. In acelasi timp se asigura o eficienta sporita testarii,
timpul necesar acestei activitati reducandu-se substantial. Un alt avantaj il
reprezinta evaluarea imediata si feedback-ul primit de autor dupa fiecare
etapa a procesului de dezvoltare.

Calitatea codului care a facut subiectul inspectiei software este de
nivel Tnalt, ceea ce duce la reducerea timpului si efortului de testare.

Deoarece inspectia software este o examinare a codului, in aceasta etapa
nu este necesara executia si testarea sa.

Dupa definitia data de Fagan [Faga86], “un defect este o situatie in
care o anumita cerinta nu este indeplinita".

Defectele identificate in procesul de inspectie software se clasifica in
doua categorii: defecte majore si defecte minore. Defectele care constau in
functionalitati sau specificatii incorecte sau lipsa se incadreaza in categoria
defectelor majore. Daca nu sunt inlaturate, produsul nu va functiona corect.

Spre deosebire de defectele majore, cele minore nu afecteaza
functionarea corecta a produsului. Exemple de astfel de defecte sunt: erori
de ortografie in documente, pozitionarea incorecta a controalelor in
programele de interfata cu utilizatorul etc.

Inspectiile software sunt examinari stricte si complete impuse de
cerintele, specificatiile, arhitectura, design-ul, codul, planurile si procedurile
de testare ale produsului [Eben94]. Principalii indicatori de performanta
pentru fiecare produs prevad criterii de terminare a fiecarei activitati din
ciclul sau de dezvoltare. Acesti indicatori includ completitudine,
corectitudine, stil, reguli de constructie si viziuni multiple [Onei88].

Completitudinea se bazeaza pe transpunerea tuturor cerintelor in cod,
lucru esential pentru mentenanta. Corectitudinea se bazeaza pe specificarea
clara a functiilor si transpunerea lor in cod, lucru esential pentru increderea
si disponibilitatea produsului [Ling79]. Stilul se bazeaza pe consistenta
inregistrarilor, esentiala pentru mentenantda. Regulile de constructie se
bazeaza pe arhitectura si protocoalele aplicatiei, sabloanele si conventiile
utilizate pentru realizarea ei, lucru esential pentru disponibilitate si
incredere. Viziunile multiple se bazeaza pe o varietate de perspective si
puncte de vedere necesar a fi reflectate in produsul software, lucru esential
pentru mentenanta. Prin detectarea timpurie a defectelor si prevenirea
propagarii lor in urmatoarele activitati se elimina nevoia de evaluari si a
corectiilor ulterioare, lucru esential pentru reducerea timpului si costurilor
de realizare.

Adoptarea inspectiei software duce la cresterea competentei si este
foarte apreciata de practicienii pregatiti pentru utilizarea sa. Organizatiile
care folosesc aceasta tehnica beneficiaza de imbunatatirea predictibilitatii
costurilor si a performantei proiectate, reducerea costurilor de dezvoltare si
intretinere, reducerea defectelor si cresterea satisfactiei utilizatorilor.

Recuperarea investitiei cu inspectia software este definita ca raportul
dintre economia neta si costurile cu detectia [Onei0O1b]. Economiile obtinute
prin detectarea si corectarea timpurie a defectelor previn cresterea
costurilor care pot sa apara daca acestea ar fi detectate in etape ulterioare
ale ciclului de dezvoltare a produsului. Un defect major nedetectat care se
propaga in etapele ulterioare poate creste costurile cu detectia si corectarea
de doua pana la zece ori [BasiO1]. Un defect minor poate creste costurile cu
detectia si corectarea de doua pana la patru ori. Economiile nete sunt deci
de péna la noua ori in cazul defectelor majore si de pana la trei ori in cazul
celor minore.

Inspectia software este o activitate laborioasa, necesitdnd adesea
evaluarea formala a codului, parcurgeri structurate si alte tehnici similare.
Rezultatele inspectiilor software pot fi impresionante, dar adesea ele nu
sunt bine realizate sau nu sunt aplicate de loc. Unii manageri considera
inspectiile software ca fiind consumatoare de resurse, iar programatorii se
simt adesea incorsetati in formalitatea procesului. Volumul total de cod

implicat este o alta constrangere, deoarece programele actuale, de o
complexitate deosebitda, implica adesea milioane de linii sursa. De aceea
este unanim recunoscut faptul ca inspectia manuala se poate aplica efectiv
numai pentru programe relativ simple.

Cu toate acestea, inspectia software este cea mai eficienta metoda de
evaluare si garanteaza faptul ca produsul final functioneaza conform
specificatiilor. in acelasi timp este utild si proiectantilor si programatorilor
care, pe viitor, vor fi in masura sa evite erorile constatate.

Pentru stabilirea componentelor de evaluat si a metodelor ce se vor
folosi trebuie avuti in vedere urmatorii factori de risc [OneiO1la]:

— componentele care folosesc tehnologii, tehnici sau instrumente

noi;

— componentele critice;

- componentele ce folosesc algoritmi complecsi, care trebuie sa fie

corecti si optimizati;

— componentele cu multe conditii de exceptie, care nu sunt usor de

testat;

— componentele care se vor reutiliza;

— componentele care vor servi drept model pentru alte

componente;

— interfetele cu utilizatorul;

— componentele realizate de dezvoltatori mai putin experimentat;i.

Componentele care se incadreaza in aceste categorii sunt considerate ca
avand un risc ridicat. Pentru acestea este necesara folosirea inspectiei
software. Componentele ale caror eventuale defecte neidentificate nu vor
afecta semnificativ planul de realizare, calitatea, costurile si obiectivele
urmarite sunt considerate ca avand un risc scazut. Pentru evaluarea lor se
pot folosi si metode mai putin formale.

34.3 Locul inspectiei software in cadrul auditului
informatic

Auditarea software consta in activitati prin care se verifica gradul de
concordanta dintre specificatii si programul elaborat. Auditul software da
masura sigurantei pe care trebuie sa o aiba utilizatorul de programe atunci
cand obtine rezultate. Siguranta se refera la corectitudinea si
completitudinea rezultatelor finale atunci cadnd si datele de intrare sunt
corecte si complete [Ivan05].

In urma verificrilor realizate se identificd diferente intre cerinte si
ceea ce s-a realizat, abateri fata de standarde, norme si restrictii impuse de
tehnicile utilizate. In cazul cel mai fericit, se constatd o suprapunere
perfectda a acestora. Daca diferentele constatate nu sunt semnificative in
raport cu criteriile de exigenta stabilite, produsul informatic este validat.

Inspectia se realizeaza asupra tuturor produselor livrabile realizate
de-a lungul ciclului de dezvoltare a aplicatiilor informatice. In cadrul acestui

proces, un rol special il are inspectia textului sursa, care consta in
parcurgerea acestuia pas cu pas si stabilirea concordantei cu specificatiile de
programare.

Pornind de la specificatiile de programare unde se prezinta datele de
intrare, rezultatele, modelele de calcul si seturile de date de test si

rezultatele ce trebuie obtinute, activitatea de inspectie compara
componentele specificatiilor software cu secventele corespondente din
program.

In urma inspectiei se constata una din urmatoarele situatii in care se

pot afla specificatiile de programare si textul sursa:

a) tuturor secventelor de texte din specificatii le corespund secvente
de instructiuni in programul sursi. In acest caz programul
realizeaza toate cerintele definite in specificatii;

b) numai anumitor secvenle de text din specificatii le corespund
secvente de instructiuni in programul sursa. In acest caz
programul nu realizeaza toate cerintele din specificatii;

c) exista mai multe secvene de cod decat cele definite in
specificatii. Este cazul in care programatorul intuieste o serie de
prelucrari necesare programului, care nu au fost incluse in
specificatii;

d) exista o diferenta totalda intre specificatii si textul sursa.
Programul realizeaza cu totul altceva decat s-a cerut prin
specificatii.

Toate aceste rezultate posibile ale compararii specificatiilor de

programare cu textul sursa al programelor sunt redate in figura 34.2.

Specificatii de programare Text sursa program
A l > A
B [— B
C [> C

a) specificatiile sunt identice cu programul

A [> A
B
C [> C

b) programul realizeaza partial cerintele din specificatii

A [> A
—

C

c) Programul realizeaza mai multe functii decat au fost prevazute
in specificatii

B Y

d) Programul face cu totul altceva decat a fost prevazut in specificatii

Figura 34.2 Rezultatele posibile ale compararii specificatiilor de
programare cu textul sursa al programului

In continuare se prezintd secvente din specificatii impreund cu textul
sursa aferent, realizat in limbajul C#, pentru exemplificarea cazurilor
prezentate in figura 34.2.

a) Specificatii identice cu programul corespund exemplului urmator.
Constructorul clasei PhotoManager este o metoda publica, fara parametri.
Se initializeaza campul connection cu o noua conexiune la SqlServer. Sirul
de conectare se gaseste in fisierul de configurare al aplicatiei si este cel
corespunzator bazei de date "Personal”. Campul command se initializeaza
cu o noua comanda. Comanda se va executa pe conexiunea connection si
este de tip procedura stocata. Pe constructor se deschide conexiunea. Se
initializeaza campul filter cu true sau false, in functie de rolul utilizatorului.
Daca utilizatorul este din grupul Administrators sau Friends, atunci filter
devine false.

public PhotoManager() {

Connection = new SqlConnection
(ConfigurationManager .ConnectionStrings[‘“Personal’].ConnectionString);

command = new SglCommand();

command.Connection = conection;

command .CommandType = CommandType.StoredProcedure;

connection.Open();

filter = true;

if (HttpContext.Current.User.IsInRole(“Friends™) ||
HttpContext.Current._User.IsInRole(“*Administrators’™)) {

Filter = false;
}

b) Programul realizeaza partial cerintele din specificatii. Operatorul de
inmultire a doua obiecte de tip Matrice este o metoda publica si statica din
clasa utilitara Matrice. Numele predefinit este operator*. Parametrii sunt

doua referinte la obiecte de tip Matrice, m1 si m2. Metoda returneaza
rezultatul Tnmultirii lui m1 cu m2 sub forma unei referinte la obiect de tip
Matrice alocat dinamic in corpul metodei. Se verificd dacda numarul de
coloane al lui m1 este egal cu numarul de linii ale lui m2. Daca este
adevarat, se inmultesc matricele, altfel se returneaza valoarea null.

public static Matrice operator *(Matrice ml, Matrice m2)
{
Matrice ¢ = null;
c= new Matrice(mli.lin, m2.col);
for (int i = 0; I < ml_.lin; i++)
for (int j = 0; 1 < m2.col; j++)
for (int k = 0; k < ml.col; k++)
{
cli,jl = cl[i.j] + mi[i,k] * m2[k,j];
3
return c;
b3

Aici, in cazul in care dimensiunile nu corespund se produce o exceptie
care intrerupe functionarea executiei programului. Blocul cu alocare
dinamica a Iui c si cele trei instructiuni for trebuie tratate intr-un bloc al
instructiunii

if ((nl.col == m2_1in))
{.}

c) Programul realizeaza mai multe functii decat in specificatii.
GetPhoto este o metoda publica a clasei PhotoManager. Parametrii sunt
photoid de tip int, reprezentand identificatorul imaginii in baza de date, si
dimensiunea size de tip int. Metoda returneaza un obiect de tip Stream cu
sirul de octeti care alcatuieste o imagine. Metoda apeleaza procedura
stocata GetPhoto prin intermediul obiectului command. La comanda se
adauga parametrii procedurii, @PhotoID, @Size si @IsPublic, cu valorile,
respectiv, photoid, size si filter. Rezultatul executiei procedurii stocate se
retine in memorie intr-un obiect result si se construieste obiectul stream pe
baza acestuia.

public Stream GetPhoto(int photoid, int size) {

command .CommandText = “GetPhoto”;
command .Parameters.Add(new SglParameter(“@PhotolD”, photoid));
command.Parameters.Add(new SqglParameter(“@Size”, size));
command.Parameters.Add(new SglParameter(“@IsPublic”, filter));
object result = command.ExecuteScalar();
try {

return new MemoryStream((byte[]result);

} catch (ArgumentNullException e) {

Return null;
}

3

In acest exemplu, desi nu este specificat in documentatia primita,
programatorul intuieste ca exista posibilitatea ca obiectul returnat de
procedura stocata sa fie vid. Acest lucru ar produce in linia:

return new MemoryStream((byte[])result);

o exceptie ce ar intrerupe functionarea programului. De aceea el imbraca
codul cu o sectiune try - catch, tratdnd si cazul omis de specificatii. In cazul
in care rezultatul este vid, programul nu se intrerupe, ci returneaza un
obiect vid.

In concluzie, auditul pe textul sursa analizeaza modul in care au fost
introduse datele de test, ce proceduri au activat si stabileste caracterul
partial sau caracterul complet al prelucrarilor. Auditul pe textul sursa
descopera care sunt minusurile din textul sursa sau care sunt definirile in
plus, fara a da solutii, adica fara a genera secventele lipsa, pentru a arata
cum trebuie rescris programul.

Cand se analizeaza secventele de program trebuie cautate sursele de
erori care afecteaza fluxurile de prelucrare, dintre care se enumara
[Ivan05]:

— lucrul cu variabile neinitializate;

— traversarea unor structuri de date in afara limitelor pentru care

au fost definite;

- neincluderea de teste care sa evite Tmpartirea prin zero sau
blocarea unor functii care au restrictii asupra intervalelor
parametrilor;

— construirea unor expresii care filtreaza partial sau incorect
submultimi de elemente;

— restructurarea expresiilor prin schimbarea ordinii de evaluare a
unor subexpresii diferite de cele date de specificatii;

- efectuarea de conversii intermediare care deformeaza rezultatele
finale;

— construirea expresiilor de referire a elementelor unei structuri
care dezvolta procese de cdutare/regasire neconcordante cu
specificatiile;

— absenta manipularii variabilelor de stare a prelucrarilor;

— atribuirea de coduri variabilelor de stare dupa alte reguli decat
cele date in specificatiile de programe;

— alocarea dinamica a unor variabile fara a exista si procesul de
dealocare;

— introducerea unor elemente de neomogenitate, cum ar fi citiri
scrieri de date;

— definirea de invarianti in structuri repetitive in principal prin
inexistenta incrementarilor sau decrementarilor;

- neincluderea in secvente a unor instructiuni corespunzatoare
evaluarii unui model sau filtrarii, ceea ce conduce la o tratare
partiala a problemei;

— atribuirea altei semnificatii variabilelor cu consecinte directe
asupra rolului si locului pe care acestea le au in program;

— introducerea de expresii de atribuire care anuleaza prelucrarile
precedente;

- compunerea unor constructii fara a exista o echivalenta intre
formulele finale si cele initiale ale acestora.

Inspectia textului sursa presupune si punerea in corespondenta a
variabilelor, ecuatiilor si inecuatiilor, enumerarilor, definirilor de multimi si
intervale de existenta continute in specificatiile de programare si in textul
sursa.

In ceea ce priveste variabilele, in cazul respectdrii riguroase a
specificatiilor se constata ca lista variabilelor din specificatii are aceeasi
dimensiune ca lista variabilelor din program (fiecarei variabile din specificatii
ii corespunde o variabila si numai una din program).

Daca lista variabilelor din program este mai mare decat cea din
specificatii, trebuie analizata cauza acestei situatii: i) in program sunt
definite mai multe variabile intermediare decat este necesar, sau ii)
specificatiile sunt incomplete, caz in care trebuie identificate efectele asupra
programului.

Daca lista variabilelor din program este mai mica decat cea din
specificatii, acest lucru se poate datora faptului ca i) programatorul a facut
redefiniri, caz ce nu constituie o eroare, sau ii) in program nu au fost
abordate toate aspectele din specificatii, ceea ce impune refacerea sa.

O ecuatie simpla din specificatii trebuie sa se regaseasca in program
sub forma unei instructiuni de atribuire:

— In specificatii: a=b + c + d;

— iInprogram:a=b + c+d.

O ecuatie complexa trebuie sa se regaseasca sub forma unei structuri
IF-ELSE-ENDIF sau a unei structuri CASE-ENDCASE, precum:
— in specificatii:

x? dacax>0

as= izdaca x<0 (34.1)
X

1 dacax=0

— in program:

if (b >0) a=x*Xx;
else
if(b<0a=1/7?*Xx);
else
a=1;

Cazul inecuatiilor este similar cu cel al ecuatiilor.

Indiferent de cele constatate, inspectia textului sursa doar
semnaleaza abaterile fata de specificatii, fara sa dea solutii. Va fi sarcina
echipei de programare sa remedieze erorile identificate.

Un alt aspect pe care inspectia trebuie sa il aiba in vedere este cel al
structurilor de date. Programele lucreaza cu fisiere, cu matrice, liste, stive,
arbori binari, arbori B sau alte structuri de date agregate. Rolul inspectiei
software orientata pe structuri de date este de a vedea daca:

— au fost bine alese structurile de date;

— implementarea procedurilor respecta cerintele impuse de

rezolvarea problemei;

- complexitatea structurilor de date utilizate este in concordanta cu

complexitatea problemei;

- expresiile de referire a elementelor din structuri sunt cat mai

simple posibil. X

Pentru aceasta trebuie analizate tipurile de structuri folosite. In cazul
in care se cunoaste numarul componentelor care alcatuiesc colectivitatea,
trebuie sa se lucreze cu fisiere. In caz contrar, cand nu se cunoaste numarul

componentelor care alcatuiesc colectivitatea, trebuie sa se lucreze cu
structuri dinamice. Inspectorul analizeaza ipotezele din specificatii si verifica
daca acest lucru este respectat. Inspectia are rolul de a evidentia daca
structura de date folosita este cea adecvata. In cazul in care aceasta nu
este cea adecvata, se va demonstra cu calcule care este structura cea mai
potrivita.

O cerinta fundamentala a prelucrarii datelor este aceea de a memora
date aleatoare. Daca un sir de valori este constant, atunci trebuie sa se
memoreze numarul de elemente si valoarea constantelor. Daca sirul are
elemente ce rezulta din calcul, atunci se memoreaza valoarea de start,
expresia analitica si numarul de termeni. Pentru aceasta se analizeaza zona
de memorie cu informatia utila in care se descriu caracteristicile elementelor
colectivitatii pentru care se efectueaza prelucrarea, zonele unde se definesc
legaturile dintre elemente si care sunt variabilele pointer.

Pentru structurile de date existente in programme se defineste
volumul de prelucrari legat de numarul de comparari necesare pentru a
ajunge la elementul cautat din structura. Pentru aceasta, inspectorul
analizeaza structurile definite in program, estimeaza volumul necesar de
comparari si verificd daca structura de date utilizata este cea care
determina volumul cel mai redus de comparari.

34.4 Structura echipei de inspectie software

Cand dezvoltatorii isi revizuiesc propria muncd nu observa toate
defectele produsului. De aceea este necesara revizuirea produsului de catre
0 noua echipa.

Echipa de inspectie software este formata dintr-un grup de oameni
care lucreaza impreuna pentru a analiza fiecare produs al unei activitati de
dezvoltare, cu scopul de a identifica si inlatura defectele. Acest lucru este
realizat prin atribuirea de cinci roluri procedurale diferite pentru membrii
echipei: autor, moderator, lector (reader), inregistrator (recorder) si
inspector [Fran**].

Autorul este persoana care a realizat produsul sau un stadiu al
acestuia si este ultimul responsabil cu actualizarea acestuia dupa inspectia
software. De regula este persoana care a creat initial produsul. Lui i se vor
adresa intrebari specifice cu privire la continutul produsului si isi va folosi
cunostintele speciale pentru a ajuta la detectarea defectelor reale si pentru
a preveni ca simple neintelegeri sa fie considerate defecte. El va corecta
toate defectele majore identificate precum si, in limita timpului si resurselor
disponibile, defectele minore.

Moderatorul conduce echipa de inspectie software si este responsabil
cu asigurarea faptului ca procedurile inspectiei sunt respectate de-a lungul
intregului proces de inspectie. Aceasta include asigurarea ca toti membrii
echipei isi indeplinesc rolurile la nivelul sarcinilor. Sarcinile sale sunt:

— verificarea faptului ca produsul este pregatit pentru inspectia

software;

- verificarea indeplinirii criteriilor de inceput;

- alegerea efectiva a echipei de inspectie software;

— Inregistrarea intalnirilor de inspectie software;

- verificarea indeplinirii criteriilor de terminare.

Moderatorul este implicat activ in toate etapele inspectiei software,
mai putin in cea de refacere.

Lectorul este responsabil cu conducerea echipei in timpul intalnirilor
de inspectie software, prin prezentarea unor unitati logice mici.

Inregistratorul documenteaza toate defectele identificate in timpul
intalnirilor de inspectie software. Aceasta documentatie include locul unde a
fost identificat fiecare defect, o scurta descriere a sa, precum si numele
inspectorului care |-a gasit. In plus, fiecare defect este asociat unei categorii
si unui tip de defecte. Toate defectele sunt inregistrate intr-o lista de
defecte.

Independent de rolul atribuit, toti membrii echipei au si rolul de
inspectori. Rolul de inspector este responsabil cu analiza produsului si
identificarea defectelor sale. In functie de aspectele urmarite, inspectorii pot
avea urmatoarele roluri [Dona**]:

— arhitect de software, cu rolul de a inspecta proiectul din punct de

vedere al calitatii si conformitatii cu arhitectura software;

— programator, cu rolul de a inspecta componentele software din
punct de vedere al conformitatii cu standardele de codificare;

— inginer de testare, cu rolul de a inspecta produsul software pe
componente si integrat;

— inginer de calitate, cu rolul de a inspecta componentele software
din punct de vedere al calitatii si conformitatii cu conventiile
utilizate;

— inginer de securitate, cu rolul de a inspecta componentele
software din punct de vedere al cerintelor si mecanismelor de
securitate;

— reprezentantul utilizatorilor, cu rolul de a inspecta interfata cu

_utilizatorul din punct de vedere al facilitatilor de utilizare.

In functie de pregatirea pe care o are, un inspector poate indeplini
unul sau mai multe din aceste roluri. Important este ca un anumit aspect sa
fie urmarit de o singura persoana, sa nu existe suprapuneri in activitatea de
inspectie si, in acelasi timp, echipa sa nu fie prea numeroasa.

Fiecare inspector va intocmi un raport de inspectie cu cele constatate.
Aceste rapoarte vor sta la baza intocmirii raportului final, care va
concluziona cele constatate de intreaga echipa.

Echipa realizeaza inspectia software pe parcursul unui set de etape
predefinite, a caror inlantuire este prezentata in figura 34.3.

Produsul R Etapa de R Pachet de R Etapa de
inspectat ”| planificare ”| inspectie »”| prezentare
/
y
Lista de P Etapa de P Nota de
defecte < pregatire [€ intalnire
Raport
Etapa de .| intermediar | FEtapade
intalniri ”| de inspectie > refacere
Produsul P
verificat < v
Etapa de P Produsul
verificare [© revizuit
Raport final

de inspectie [

Figura 34.3 Etapele inspectiei software.

Pentru unele produse software se defineste un singur tip de inspectie,
in timp ce pentru alte produse sunt necesare mai multe tipuri de inspectie.
Un produs software are tipuri diferite de inspectie pentru specificatii, design,
cod sursa. Fiecare tip de inspectie este unic si complet definit de sapte
parametrii, prezentati in figura 34.4.

Scop

INSPECTIE

Criterii Liste _/e_rifica_re Criterii
de intrare Participanti de iesire
Proceduri

\

Clasificarea
defectelor

Figura 34.4 Parametrii inspectiei

Scopul descrie ceea ce va realiza inspectia. Sopul general al inspectiei
este verificarea produsului software.

Criteriile de intrare se refera la datele de intrare pentru etapa de
intrunire. Acestea includ produsul software asupra caruia se va realiza
inspectia, cerintele si specificatiile produsului, precum si alte rapoarte
necesare. Criteriile minime de intrare:

— codul produsului - codul a fost compilat cu succes, fara mesaje de

eroare;

— documentatia produsului - ortografie corecta.

Listele de verificare contin indicatii si recomandari adresate
inspectorilor pentru a gasi cu usurinta defectele produsului analizat.

Participantii sunt reprezentati de persoanele care vor indeplini
procesul de inspectie.

Procedurile explica cum trebuie abordat fiecare tip de inspectie.

Clasificarea defectelor descrie ceea ce trebuie asociat cu un defect si
cum se inregistreaza acestea. De obicei exista trei caracteristici care sunt
atribuite unui defect: tipul, circumstanta si gradul de impact. Aceste
caracteristici sunt denumite tipul defectului, clasa si gravitatea. Impreuna
acestea ajuta la procesul de identificare a defectelor si la transmiterea
rezultatelor inspectiei.

Criteriile de iesire indica inspectorilor momentul in care procesul de
inspectie este terminat. Cel mai intalnit criteriu de iesire este faptul ca toate
defectele identificate in etapa de intrunire sunt corectate. Criteriile de iesire
includ, de obicei, produsul software verificat si corectat, precum si un raport
de inspectie.

Scopul principal al procesului de inspectie software este de a elimina
defectele dintr-un anumit produs. Produsul poate fi: specificarea cerintelor,
manualul de proiectare sau module program. Pentru a determina daca un
produs este pregatit pentru inspectie se folosesc anumite criterii de intrare.
Sfarsitul inspectiei se realizeaza la atingerea criteriilor de terminare a
procesului. Criteriile de intrare depind de fiecare produs in parte, dar in

general se refera la a determina daca produsul este suficient de matur
pentru a fi folosit dupa inlaturarea defectelor. In general, criteriile de iesire
trebuie sa asigure ca au fost inlaturate toate defectele identificate in timpul
procesului de inspectie. Este posibil ca dintre aceste criterii sa se excluda
corectarea defectelor minore, care nu au impact negativ in utilizarea
produsului.

Indiferent ce este produsul analizat, procesul de inspectie va urma
aceleasi etape. Aceste etape sunt prezentate in tabelul 34.1, [Fran**].

Tabelul nr. 34.1 Etapele procesului de inspectie

Etapa Descriere
Planificare Identificarea produsului de inspectat si stabilirea
planului de inspectie
Prezentare Etapa optionala in care membrii echipei care nu

sunt familiarizati cu produsul de inspectat se
familiarizeaza cu problema

Pregatire Membrii echipei inspecteaza individual produsul
pentru gasirea defectelor

Intalniri Membrii echipei se intalnesc pentru a discuta
posibilele defecte gasite

Refacere Produsul este revizuit conform cerintelor si
specificatiilor

Verificare Produsul refacut este verificat, datele finale ale

inspectiei sunt colectate si centralizate si procesul
de inspectie este inchis

34.5 Planificarea inspectiei software

Exista parerea ca inspectiile sunt realizate in ultimul moment astfel
incat produsul poate fi considerat terminat si livrat clientului sau trecut in
urmatoarea etapa de dezvoltare. Nu aceasta este realitatea atata timp cat
inspectiile trebuie planificate cu grija si membrii echipei trebuie coordonati
pentru atingerea scopului comun.

Primul pas 1in initierea unei inspectii apare atunci cand autorul
considera ca produsul indeplineste toate conditiile de intrare in etapa de
planificare. Autorul notificd acest Ilucru moderatorului si este
responsabilitatea acestuia sa verifice indeplinirea conditiilor. Criteriile de
intrare specifica materialele ce vor fi inspectate si conditiile pe care acestea
trebuie sa le indeplineasca. Daca aceste criterii nu sunt indeplinite,
moderatorul informeaza autorul despre ce mai trebuie facut pentru
satisfacerea lor. Aceastd verificare este importantda pentru procesul de
inspectie deoarece ofera o garantie ca produsul se afla intr-o etapa potrivita
pentru inceperea inspectiei.

Dupa verificarea criteriilor de intrare, moderatorul selecteaza membrii
echipei si le atribuie roluri. Dupa alegerea acestora, moderatorul poate
determina daca inspectorii detin suficiente informatii despre produs pentru
indeplinirea rolurilor atribuite. Daca acest lucru nu este realizat, se va
programa o intalnire de prezentare pentru ca inspectorii sa primeasca toate
informatiile necesare.

Scopul principal al etapei de planificare este de a asigura eficienta
necesara procesului de inspectie. Pentru indeplinirea acestui obiectiv, n
etapa de planificare trebuie avute in vedere urmatoarele aspecte:

echipa de inspectie va fi formata din urmatoarele persoane:
moderator, inregistrator, inspector, lector si autor;

produsul ce urmeaza a fi inspectat va fi “inghetat” pe durata
procesului de inspectie;

intélnirile echipei nu vor depasi doua ore;

managerii de proiect vor identifica punctele de verificare in planul
proiectului pentru conducerea inspectiei;

lista de verificare va fi folosita de inspectori pentru a ajuta la
identificarea defectelor;

trebuie asigurate cel putin doud ore de pregatire;

la un moment dat se vor inspecta maximum 20 pagini ale
produsului;

autorul nu va indeplini rolul de moderator, lector sau
inregistrator.

In tabelul 34.2 se prezintd scopul, activitdtile si rolurile procedurale
ale etapei de planificare a inspectiei software.

Tabelul nr. 34.2 Activitatile si rolurile etapei de planificare

Scop

*= QOrganizarea si planificarea resurselor;

Intrari

= Forma finalda a produsului;

» Materiale suport;

= Criterii de demarare a inspectiei;

» Datele de inspectat (daca sunt disponibile);

Sarcini

= Verificarea criteriilor de demarare;

» Selectarea echipei;

= Determinarea necesitatii unei prezentari;

»= Intocmirea planului de inspectie;

» Completarea si distribuirea pachetului de inspectie;

Masuratori

» Planificarea efortului;
= Dimensiunea produsului;

Iesiri

» Definitivarea si distribuirea pachetului de inspectie
» Planificarea unei prezentari (optional).

Roluri

Moderatorul:
v’ verifica indeplinirea criteriilor de demarare;
v selecteaza membrii echipei de inspectie;

v decide daca este necesara organizarea unei

prezentari;

v planifica intalnirile si intocmeste notele de
intalnire;
Autorul:
v" revede produsul cu moderatorul;
v' propune membrii echipei;
v recomanda, daca este cazul, o Iintalnire de

prezentare;

34.6 Etapa de prezentare

Obiectivul tuturor inspectiilor software este de a analiza produsul si
de a detecta si inlatura defectele. Pentru aceasta este necesar un anumit
nivel de cunoastere a produsului. Daca moderatorul considera ca inspectorii
nu detin suficiente cunostinte, poate organiza o intdlnire de prezentare
pentru punerea lor in tema. Autorul va explica functionalitatea produsului si
va face o descriere a tuturor tehnicilor si conventiilor folosite.

In tabelul 34.3 se prezinta scopul, activitatile si rolurile procedurale
ale etapei de prezentare.

Tabelul nr. 34.3 Activitatile si rolurile etapei de prezentare

Scop = Informare;
Intrari » Produsul de inspectat;
*= Prezentarea materialului;

Sarcini = Moderatorul conduce intalnirea de prezentare;
= Autorul prezinta produsul;

Masuratori | = Timpul de pregatire necesar autorului;

= Timpul necesar intalnirii;

Iesiri » Intelegerea mai bund a produsului;

= Atribuirea responsabilitatilor;

= Pachetul de inspectie a produsului;

= Materialul intalnirii de prezentare;

= Nota de intalnire;

Roluri Moderatorul:

v' conduce intalnirea astfel incat sa maximizeze
schimbul de informatii;

v daca este necesar, atribuie responsabilitati (teste,
standarde, claritate) pentru fiecare inspector;

Autorul:

v pregateste intalnirea;

v prezinta materialul;

v raspunde la intrebari;

Inspectorul:

v' pune intrebari pentru o mai buna intelegere a
produsului;

v nu revizuieste si nu discutda alternative de
proiectare/implementare;

34.7 Etapa de pregatire a inspectiei

Aceasta este cea mai importanta etapa a procesului de inspectie. In
timpul etapei de pregatire, fiecare membru al echipei examineaza individual
produsul, cautandu-i defectele. Pentru o mai buna analiza a produsului,
fiecarui inspector 1i sunt atribuite anumite categorii de defecte.

De notat ca defectele nu apar doar in etapa de codificare a
proiectului. Cele mai multe produse software trec prin mai multe etape si
produc diferite produse. De cate ori rezulta un produs exista posibilitatea de

aparitie a unor defecte. Pentru fiecare din aceste produse procesul de
inspectie trebuie sa prevada o lista de verificare care descrie defectele fazei
respective. In tabelul 34.4 se prezintd un exemplu cu cerintele listei de
verificare.

Tabelul nr. 34.4 Cerintele listei de verificare

Categoria de Intrebari
defecte
Claritate = Cerintele sunt clare si neambigue?
Standarde » Toate cerintele au standarde ce trebuie

urmarite?

Completitudine

»= Toate cerintele sunt complete?

Nivelul de detaliu

» Cerintele sunt independente de proiectare?

Consistenta

= Cerintele sunt consistente?
» Datele sunt structurate si functiile au nume si
sunt folosite consistent?

Functionalitate

» Functiile sunt corect specificate?

» Intrarile si iesirile sunt specificate clar?

» Functiile sunt logic independente si formeaza
o structura bine organizata?

Performanta

» Sunt clar definite cerintele de performanta
pentru sincronizare, folosirea memoriei si a
resurselor?

Testabilitate

» Exista cerinte pentru testare si verificare?

Fezabilitate

» Fiecare componenta poate fi implementata cu
tehnicile, instrumentele, resursele Si
personalul disponibil si cu restrictile de
costuri si planificare specificate?

Maleabilitate

= Cerintele sunt unic identificate?

Capacitate de
modificare

» Cerintele sunt unic structurate astfel incéat
orice modificare necesara sa poata fi facuta
usor, complet si consistent?

Toate defectele posibile identificate de inspectori in etapa de
pregatire trebuie inregistrate. De notat ca in acest moment acestea nu vor fi
considerate defecte ale produsului. Fiecare inspector va inregistra
potentialele defectele gasite, dar numai in etapa de intalnire se va stabili
care dintre ele sunt defecte reale si care nu.

In tabelul 34.5 se prezinta scopul, activitatile si rolurile procedurale
ale etapei de pregatire.

Tabelul nr. 34.5 Activitatile si rolurile etapei de pregatire

Scop = Intelegerea produsului si identificarea potentialelor
defecte;
Intrari = Pachetul de inspectie;

» Intelegerea produsului;

= Materialul revizuit al inspectiei;
Sarcini = Studierea produsului;

» Identificarea defectelor:

v' Daca este necesara o inspectie a cerintelor, se
foloseste lista de inspectie a cerintelor
software;

v Daca este necesara o inspectie la nivelul
proiectarii de detaliu, se foloseste lista de
inspectie a proiectarii detaliate;

v. Daca este necesara inspectia codului, se
determina daca exista o lista pentru limbajul in
care este scris codul. Daca exista, se foloseste
lista respectiva. Daca nu, se adapteaza lista
principald pentru inspectia codului la cerintele

_ limbajului de inspectat;

= Inregistrarea timpului de pregatire;
= Completarea listei de defecte;
Masuratori | = Timpul de pregatire;

= Numarul de defecte;

Iesiri = Lista completa de defecte;

* Inregistrarea timpului de pregatire;

Roluri Inspectorul:
v studiaza produsul;
v' identifica defectele;
v inregistreaza timpul de pregatire;
Moderatorul:
v' realizeaza toate sarcinile de pregatire a
inspectiei;
Lectorul:
v stabileste cum sa prezinte produsul;

34.8 Etapa de intalnire

In etapa de intadlnire intreaga echipd este responsabild cu
identificarea defectelor produsului. Toti membrii echipei participa la aceste
intalniri si prezinta defectele identificate in etapa de pregatire.

In primul rdnd moderatorul revizuieste agenda intalnirii, prezintd
participantii si rolurile lor. Apoi lectorul prezinta inspectorilor produsul,
impartit in mici unitati logice (de exemplu: paragrafe de text, blocuri de
cod, etc.). Pe masura prezentarii unitatilor logice, fiecare inspector cauta
defectele din unitatea respectiva. Cand sunt gasite posibile defecte, intregul
grup discuta daca reprezinta sau nu defecte adevarate.

Este necesara realizarea unui consens in ceea ce priveste fiecare
defect, deoarece uneori este posibil ca un potential defect sa fie o greseala
din partea inspectorului sau o neintelegere care poate fi clarificata de autor.
Cand se realizeaza consensul in ceea ce priveste un defect, lectorul il trece
in lista de defecte intr-o maniera clara si concisa. Este important ca
moderatorul sa mentina atentia participantilor asupra detectarii defectelor si
sa nu lase discutia sa devieze spre incercarea de a determina modul de
corectie a lor. Refacerea produsului se va realiza de catre autor dupa
intalnirea de inspectie. Lista de defecte are rolul de a ajuta autorul sa refaca
produsul si este folosita in etapele ulterioare ale procesului de inspectie

pentru a se verifica ca toate defectele identificate la intalnirea de inspectie
au fost corectate.

Pentru folosirea judicioasa a timpului, o intalnire de inspectie trebuie
sa urmeze o agenda de lucru predefinitda. Se recomanda ca agenda sa
contind urmatoarele capitole:

1. Introducere

2. Stabilirea pregatirii inspectorilor

3. Citirea produsului, identificarea si inregistrarea defectelor

4. Analiza defectelor

5. Determinarea dispozitiei produsului

Echipa de inspectie foloseste lista de defecte pentru a determina
dispozitia produsului. Dispozitia se refera la procedura de folosit pentru
verificarea refacerii produsului de catre autor. Robert Ebenau [Eben94]
propune urmatoarele trei categorii de dispozitii:

a) dispozitie de tip A: acceptarea produsului ca fiind complet, fara
nici o alta verificare a refacerii sale. Aceasta nu presupune ca
produsul nu mai are nici un defect, ci ca nu exista defecte care sa
determine abaterea de la specificatiile sale si ca sunt doar cateva
defecte minore care pot fi lIasate la latitudinea autorului.

b) dispozitie de tip C: acceptarea conditionatda a produsului, cu
verificarea refacerii de catre moderator, impreuna cu autorul.
Aceasta este situatia cand exista unele defecte majore, putine la
numar, iar corectarea lor nu va duce la modificari majore in
premisele de proiectare ale produsului.

c) dispozitie de tip R: reinspectarea produsului refacut de autor.
Aceasta presupune ca produsul refacut sa fie examinat de catre
moderator, autor si cel putin un membru al echipei de inspectie
intr-o noua intalnire de inspectie. Acesta este cazul in care exista
un numar insemnat de defecte majore, sau cand refacerea va

_ modifica substantial premisele de proiectare ale produsului.

In tabelul 34.6 se prezinta scopul, activitatile si rolurile procedurale
ale etapei de intalnire.

Tabelul nr. 34.6 Activitatile si rolurile etapei de intélnire

Scop = Atingerea consensului privind defectele; verificarea
produsului;
Intrari » Lista completa cu defecte;

* Timpul de pregatire inregistrat;

Sarcini = Introducere;

= Citirea produsului;

» Identificarea si inregistrarea defectelor;
= Rezumatul revizuirii defectelor;

= Determinarea dispozitiei produsului;
Masuratori | = Gradul de corectitudine a datelor;

= Datele defecte;

Iesiri = Dispozitia produsului;

* Lista completa de defecte;

= Sumarul complet al defectelor;

= Nota completa a intélnirii de inspectie;
= Raportul partial de inspectie;

Roluri Autorul:
v ramane un ascultator obiectiv si activ, ia

notite;
v' nu adopta o atitudine defensiva;
Inspectorii:

v' obiectivi si impersonali;
v bine pregatiti si participanti activi;
v' nu trebuie sa ridice probleme de stil si solutii
de dezvoltare;
Moderatorul:
v" incepe si termina sedinta la timp, mentinand o
atmosfera adecvata;
v'urmareste mentinerea sinergiei intalnirii;
v’ se asigura ca defectele intrunesc consensul
echipei;
Lectorul:
v' stabileste cea mai buna strategie de
prezentare a produsului;
v' raspunde la intrebarile puse de membrii
A echipei;
Inregistratorul:
v' trebuie sa fie familiarizat cu schema de
clasificare a defectelor;
v inregistreaza toate datele in lista principala de
defecte;
v sintetizeaza datele defecte in sumarul de
inspectie;

34.9 Etapa de refacere

Defectele identificate in etapa de intalnire sunt revazute de autor in
etapa de refacere. Autorul foloseste lista de defecte pentru a determina care
sunt acestea si unde sunt ele localizate. Cand toate defectele sunt
rezolvate, autorul prezinta din nou produsul moderatorului pentru
urmatoarea etapa de inspectie.

Exista situatii in care un defect identificat de echipa de inspectie nu
este inlaturat in aceasta etapa. Oricare ar fi motivul pentru care corectia
este amanata, decizia pentru acest lucru trebuie sa apartind managerului de
proiect. Defectul va fi notat in sistemul de control al modificarilor proiectului
si va fi urmarit de managerul de proiect pana cand va fi posibil de corectat
efectiv.

In tabelul 34.7 se prezinta scopul, activitatile si rolurile procedurale
din etapa de refacere.

Tabelul nr. 34.7 Activitatile si rolurile etapei de refacere

Scop = Corectarea si rezolvarea defectelor;

Intrari * Lista completa cu defecte;
* Timpul de pregatire inregistrat;

Sarcini

Autorul:
v' rezolva toate defectele;
v" notifica moderatorului terminarea refacerii;
v' raporteaza managerului de proiect defectele
nerezolvate;

Masuratori

= Numarul de defecte;
= Efortul de refacere;

Iesiri

= Defecte rezolvate;

» Inregistrarea timpului de refacere in lista principala de
defecte;

» Notificarea catre moderator a terminarii refacerii;

»= Produsul revizuit;

Roluri

Autorul:
v rezolva defectele;
v' raporteaza managerului de proiect defectele
nerezolvate;
v' notifica moderatorului terminarea refacerii;

34.10 Etapa de verificare a refacerii

Toate revizuirile produsului facute de autor in etapa de refacere
trebuie verificate formal, deoarece este posibil ca autorul sa fi provocat noi
defecte in incercarea de corectare a defectelor identificate anterior. In
functie de dispozitia atribuita produsului in timpul intalnirilor de inspectie,
moderatorul decide:

— pentru dispozitie de tip C (acceptare conditionata) moderatorul va
verifica reviziile facute. El se va concentra atat pe continutul
reviziilor, cat si pe interfata acestora cu restul documentului.

— pentru dispozitie de tip R (reinspectarea produsului) se va relua
intreg procesul de inspectie, dar cu focalizarea pe reviziile facute
si pe interdependentele dintre ele.

Dupa ce autorul realizeaza toate modificarile cerute si moderatorul

verificéA reviziile, acesta completeaza celelalte rapoarte de inspectie.

In tabelul 34.8 se prezinta scopul, activitatile si rolurile procedurale
din etapa de verificare.

Tabelul nr. 34.8 Activitatile si rolurile etapei de verificare

Scop » Terminarea si certificarea inspectiei;

Intrari * Produsul revizuit, daca dispozitia sa a fost de tip C;
* Produsul, daca dispozitia sa a fost de tip A;
= Toate situatiile de inspectie;

Sarcini * Moderatorul verifica produsul:

v' daca dispozitia produsului a fost de tip R, se
reia de la etapa de planificare;

v' daca dispozitia produsului a fost de tip C, se
verifica refacerea si, daca este necesar, se reia
etapa de refacere;

v' daca dispozitia produsului a fost de tip A, se
certifica inspectia;

Moderatorul completeaza raportul de concluzii;

Moderatorul transmite managerului de proiect

fisierul de inspectie;

Masuratori | = Efortul de verificare;

= Raportul de concluzii;

Iesiri »= Produsul verificat;

= Certificarea inspectiei;

= Raportul complet de concluzii;

» Fisierul de inspectie;

Roluri Autorul:
v planifica reinspectia, daca dispozitia produsului

a fost de tip R;
v realizeaza si reface ceea ce a identificat
moderatorul;

Moderatorul:

v' intocmeste planul reinspectiei, daca dispozitia
produsului a fost de tip R;

v’ examineaza refacerea impreuna cu autorul,
daca dispozitia produsului a fost de tip C;

v' completeaza raportul de concluzii;

34.11 Elaborarea rapoartelor de inspectie

Sunt patru rapoarte standard care trebuie folosite cand este
programata o intalnire de inspectie, cand sunt identificate defecte sau cand
sunt pregatite rapoarte pentru manageri. In timpul procesului de inspectie,
aceste rapoarte constituie un mecanism de comunicare intre membrii
echipei si manageri. Cele patru rapoarte standard, al caror flux este
prezentat in figura 34.5, sunt: nota de intalnire, lista de defecte, raportul de
concluzii si raportul pentru management.

Avizul de
Tnté!nire
v
¥ “a
Lista d v
d|sfa te Rezumatul Raportul de
etecte defectelor management

Figura 34.5 Fluxul rapoartelor inspectiei.

Nota de intalnire este intocmita de moderator in etapa de planificare
si scopul sau este de a informa membrii echipei despre inspectia care
urmeaza. De obicei raportul este trimis membrilor echipei ca parte a
pachetului de Ilucru, care include toate materialele necesare pentru

demararea etapei de planificare. Pachetul poate include produsul, nota de
intalnire, lista de defecte si alte liste de control.

Nota de intalnire trebuie sa contind urmatoarele informatii ce vor fi
completate de moderator inainte de a fi transmise membrilor echipei:

antetul notei - informatii administrative care includ: numele
proiectului, data distribuirii, activitatea, componenta, versiunea,
documentul, numele moderatorului;

tipul intalnirii — inspectie, reinspectie, mentenanta;

tipul inspectiei - cerinte, proiectare de ansamblu, proiectare de
detaliu, cod;

programul intalnirii - data, durata, timpul de pregatire,
dimensiunea produsului;

membrii echipei de inspectie — numele, categoriile de defecte
pentru care sunt responsabili, rolurile procedurale;

comentarii.

Lista de defecte este raportul folosit de inspectori in etapa de
pregatire. Raportul contine un antet si sectiuni pe tipuri de intalniri, la fel ca
nota de intalnire descrisa anterior. Lista de defecte contine urmatoarele
informatii care ajuta la inregistrarea defectelor identificate:

locatia - este completata de inspectori in etapa de pregatire;

aceasta zona este folosita pentru localizarea defectelor si contine:

e numarul defectului: este numarul de identificare atribuit
defectului;

e numarul de pagina: este numarul paginii produsului unde a
fost identificat defectul;

e numarul de sectiune: este numarul sectiunii produsului unde a
fost identificat defectul;

e numarul de paragraf: este numarul paragrafului unde a fost
identificat defectul;

e numarul de propozitie: este numarul propozitiei unde a fost
identificat defectul;

descrierea defectului - este completata de inspectori in etapa de

pregatire, intr-o forma scurta si concisa.

defectul — aceasta zona este completata de moderator in etapa de

intélnire. Este folosita pentru clasificarea defectelor si se compune

din:

e acceptare D/N: se bifeaza “D” daca exista consensul
inspectorilor ca defectul identificat reprezinta un defect real;

e tipul defectului: este un numar care identifica categoria de
defecte din lista de control a inspectorilor;

e clasa defectului: echipa de inspectie poate decide ca defectul
a fost cauzat de ceva care lipseste, este eronat sau este din
afara produsului; suplimentar, echipa poate preciza “nu este
sigur”;

e gravitatea defectului: se specifica daca defectul este
considerat unul major, mediu sau minor, corespunzator
impactului potential asupra produsului daca nu este inlaturat;

timpul de refacere - este completat de autor in etapa de refacere

si reprezinta timpul necesar pentru remedierea defectului.

Raportul de concluzii este completat dupa etapa de intélniri. El
sumarizeaza tipurile, clasele si gravitatea tuturor defectelor identificate in

timpul intélnirilor de inspectie si contine un antet si sectiuni pe tipuri de
intalniri, la fel ca in raportul de intalniri descris anterior.

Raportul trebuie sa contind, pentru fiecare categorie de defecte
(majore, medii si minore), descrierea consecintelor, prin specificarea clasei
de defecte: lipsa, eronat, din afara produsului, nu este sigur.

Raportul de management este completat de moderator la sfarsitul
etapei de intélniri. Contine un antet si sectiuni pe tipuri de intélniri, la fel ca
la raportul de intalniri prezentat anterior. Raportul contine urmatoarele
informatii care ajuta la inregistrarea datelor de identificare si performanta
ale procesului de inspectie software:

- dispozitia - se refera la procedura ce va fi folosita pentru
verificarea refacerii produsului de catre autor; valorile posibile
sunt “acceptare”, “acceptare conditionata” si “reinspectie”.

- informatii despre produs - se inscriu urmatoarele informatii:

e numarul de inspectori;

e numarul total de pagini inspectate;
e numarul total de defecte gasite;

e cine a realizat refacerea;

- informatii despre efortul total depus - se descrie efortul in ore,

pentru urmatoarele activitati ale procesului de inspectie:

efortul pentru planificare;

efortul pentru pregatire;

efortul total;

durata intalnirilor de inspectie;

efortul de completare a rapoartelor;
e efortul de verificare;

— timpul de pregatire pentru inspectori — se prezinta timpul necesar
fiecarui inspector pentru pregatire.

- certificarea moderatorului - este autorizarea data de moderator
precum ca procesul de inspectie a fost terminat.

34.12 Inspectia software automata

In ultima vreme se afirmd tot mai mult tehnologiile de inspectie
software automatd. Aceste tehnologii, livrate ca instrumente si servicii
comerciale, pot localiza multe erori de programare, erori care pot fi cauza
celor mai multe esecuri. Strategia acestor tehnologii este de a analiza codul
sursa inainte de testarea sa si de a identifica potentialele probleme inainte
ca acestea sa se manifeste ca bug-uri de programare. Cel mai important
aspect al inspectiei automate este capacitatea de depanare a codului inainte
de executia sa. Ea este superioara testarii, care implicd necesitatea
executarii codului si a construirii, intretinerii si rularii de seturi de date de
test.

Inspectia software automata reprezinta o noua abordare bazata pe
utilizarea unor programe care realizeaza parti din acest proces. Ea este mult
mai eficienta decat inspectia manuala si asigura cresterea productivitatii in
activitatea de dezvoltare de software. Acest lucru se realizeaza prin:

— reducerea costurilor, printr-o detectare mai putin costisitoare a

defectelor;

— reducerea timpului, printr-o detectare mai rapida a defectelor;

- cresterea calitatii, prin depistarea defectelor ce nu pot fi

identificate prin testare.

Unele instrumente folosite pentru inspectia software automata, cum
ar fi Flexelint de la Gimpel Software si QAC de la Programming Research,
verifica respectarea standardelor de codificare si genereaza mesaje de
atentionare privind posibilele defecte. Unele instrumente genereaza un
volum mare de mesaje de atentionare care sunt fals pozitive. Cu alte
cuvinte, instrumentul “crede” ca a gasit un defect, dar la o analizd mai
profunda a contextului se dovedeste ca acesta nu constituie o problema
reala. Toata lumea cunoaste avertizarile nerelevante generate de
compilatoare. Aceasta problema fals pozitiva este destul de severa intr-un
instrument de inspectie automata. In Flexelint de exemplu, apar peste 50
mesaje fals pozitive la fiecare defect real.

In anumite cazuri mesajele fals pozitive pot fi eliminate prin crearea
de filtre capabile sa inlature automat un subset de astfel de mesaje. Totusi
este necesar un proces manual pentru a elimina mesajele fals pozitive
neretinute de filtru. Dezvoltatorii au nevoie de un mijloc de a evalua fiecare
mesaj de atentionare pentru a determina daca este intr-adevar un defect
sau un mesaj fals pozitiv. Pentru a folosi efectiv instrumente de inspectie
automata, firmele dezvoltatoare de software trebuie sa angajeze sau sa
pregateasca experti in inspectie si sa implementeze o metodologie pentru
evaluarea si inlaturarea mesajelor fals pozitive, pentru a fi sigure ca
rezultatele inspectiei automate contin defecte reale si nu un numar mare de
mesaje fals pozitive.

Pentru asigurarea unui beneficiu maxim, inspectia automata trebuie
realizata imediat dupa terminarea etapei de codificare si inainte ca produsul
sa intre in testare. Deoarece inspectia automata nu necesita ca aplicatia sa
fie compilata, programele pot fi inspectate chiar inainte de integrarea lor cu
alte componente ale aplicatiei.

Multe din eforturile de dezvoltare din zilele noastre sunt globale, cu
echipe aflate in diferite locatii lucrand in etapa de codificare. Cu inspectia
automata firmele de software pot asigura calitatea fiecarui segment de cod
in fiecare etapa a procesului de dezvoltare. Fiecare componenta poate fi
inspectata independent, apoi poate fi inspectata si integrarea
componentelor. Rezultatul va fi o solutie “curatd” de la inceput pana la
sfarsit.

O alternativa la utilizarea directa a unor instrumente de inspectie
automata este apelarea la serviciile unei firme specializate. Astfel, compania
Reasoning Inc. pune la dispozitie servicii prin care se identifica
vulnerabilitatile si defectele din programe realizate in limbajele C, C++ si
Java:

— zonele sensibile la accese neautorizate sau atacuri din afara;

— defecte care pot cauza caderi ale sistemului, coruperea datelor

sau comportari anormale ale programelor;

— secvente de cod nefolosite sau incomplete, care pot avea impact

negativ asupra integritatii aplicatiei si a costurilor cu mentenanta.

Realizarea unui produs software presupune un consum apreciabil de
resurse umane si financiare. Este necesar ca produsul sa fie realizat in
timpul planificat, cu nivelul de calitate stabilit prin cerintele formulate si in
limita bugetului alocat [Ivan05]. Nici o echipa de dezvoltare software nu fisi
poate permite ca produsul livrat sa manifeste defecte si/sau vulnerabilitati

in faza de exploatare curentd. Inldturarea lor in acest moment ar fi deosebit
de costisitoare, atat in plan financiar cat si in cel al imaginii.

Inspectia software reprezintda cea mai eficienta tehnica utilizata in
scopul asigurarii unei inalte calitati a produselor realizate. Este un proces de
revizuire tehnica realizat de-a lungul etapelor de dezvoltare a produselor
software, cu scopul de a identifica si inlatura defectele. Ea se poate aplica
oricarui produs rezultat in diversele etape ale procesului de dezvoltare: de
la determinarea cerintelor, pana la etapa de testare. Scopul sau este de a
identifica si inlatura defectele inca din primele etape ale procesului de
dezvoltare, stiind ca remedierea lor in etapele ulterioare poate duce la
cresterea costurilor de cateva zeci de ori.

Alaturi de testarea conventionald, inspectia automata permite
proiectelor software sa obtind beneficiile combinarii metodelor traditionale
cu cele noi intr-un mod echilibrat si cu costuri reduse, astfel incat sa se
asigure o calitate superioara produselor software.

	Principalele tipuri de audit informatic sunt [Ivan05]:
	34.8 Etapa de întâlnire
	34.9 Etapa de refacere
	Raportul de management este completat de moderator la sfârşitul etapei de întâlniri. Conţine un antet şi secţiuni pe tipuri de întâlniri, la fel ca la raportul de întâlniri prezentat anterior. Raportul conţine următoarele informaţii care ajută la înregistrarea datelor de identificare şi performanţă ale procesului de inspectie software:

