32. GRADUL DE OCUPARE A ZONEI DE MEMORIE

32.1 Zone de memorie

Zona de memorie ocupata de structurile de date include:

- campul pentru informatia utila in care se definesc campuri ce fac
obiectul prelucrarilor;

- campul pentru definirea de variabile pointer in vederea stabilirii
legaturilor intre componente.

Daca se noteaza:

o X - numarul de elemente din structura de date;

e Liu - lungimea zonei de memorie ocupata de informatia utila data ca
numar de baiti;

e Lgp - lungimea zonei de memorie ocupata de o variabila pointer;

e Lgcp/ - lungimea zonei de memorie ocupata de variabila pointer spre

primul element al structurii de date.

Se obtine indicatorul Gru - gradul de utilizare a zonei de memorie, ca
raport intre lungimea totala a zonei de memorie ocupata de informatia utila
in structura de date si totalul zonei de memorie prin care se defineste
structura de date.

Toate relatiile sunt elaborate pentru luarea in calcul a reprezentarii pe
32 de biti pentru variabilele de tip intreg.

Se considera codul sursa pentru structura care defineste informatia
utild inclusa in definirea elementelor din lista simpla, lista dubla, arbori,
graf, pentru care se calculeaza gradul de utilizare a zonei de memorie:

struct infof{
int cod;
char nume[30];
char adresa[40];
int varsta;
float salariu;

};

In aceastd structurd variabila cod este utilizatd pentru a identifica
fiecare element din colectivitatea careia i se asociaza o structura dinamica.
Campul cod joaca rol de cheie unica in procedurile de cautare a elementelor
si de definire a nodurilor in structura de tip graf.

32.2 Zone de memorie asociate listelor

In cazul listei simple cu x elemente, gradul de utilizare este dat de
relatia:

ru= X*Iflu (32.1)
x*(Lgp + Liu)+ Lgcpl

Pentru lista simpla cu 142 de elemente definite prin:

struct element{
info * iInf;
element * urm;

};

rezulta:

o X - numarul de elemente din structura de date este 142;

e Liu - lungimea zonei de memorie ocupata de informatia utila este 78
baiti;

e Lgp - lungimea zonei de memorie ocupata de o variabila pointer este
2 baiti;

e Lgcpl - lungimea zonei de memorie ocupata de variabila pointer spre

primul element al structurii de date este de 2 baiti.
si rezulta ca gradul de utilizare pentru lista simplu inlantuita are valoarea:

142%78
ru=
142 % (78+2)+2

=0.9748 (32.2)

In cazul listei duble in care apare in plus variabila pointer pentru
referirea elementului precedent, numita prec gradul de ocupare a zonei de
memorie este dat de relatia:

X Liu
Gru= - (32.3)
X*(2*Lgp+ Liu)+ 2= Lgcpl

Daca se considera lista dubla avand elementele definite prin:

struct element{
info * inf;
element * urm;
element * prec;

rezulta:

o X - numarul de elemente din structura de date este 142;

o Liu - I_u_ngimea zonei de memorie ocupata de informatia utila este 78
e Lgp ?allglﬁgimea zonei de memorie ocupata de o variabila pointer este
e Lgcpl E tI)l?rlwggl;gmea zonei de memorie ocupata de variabilele pointer spre

primul si spre ultimul element al structurii de date este in total de
4 baiti, onsiderati pointeri spre capul de lista dubla, respectiv
pointer spre sfarsit de lista dubla.

Se obtine gradul de utilizare pentru lista dublu inlantuita care are
valoarea:

142%78
ru=
142% (78 +4) + 4

=0.9508 (32.4)

32.3 Zone de memorie asociate arborilor

In cazul arborilor binari cu x elemente, gradul de utilizare este dat de
relatia:

X * Liu
Gru= - (32.5)
x*(2=*Lgp+ Liu)+ Lgcpl

Pentru arborele binar ale carui noduri sunt definite prin secventa
C++:

struct element{
info * inf;
element * fius;
element * fiud;

};

avand 142 de noduri gradul de utilizare a memoriei este:

142 %78

Gru=
142 % (4+78)+2

=0.9510 (32.6)

Daca arborele binar este organizat pe m niveluri, iar pe fiecare din
cele K niveluri se afla n; noduri, numarul total de noduri NrN din structura
arborescenta, dat de relatia:

K
NEN=>n (32.7)
i=1
Se determind gradul de utilizare a zonei de memorie in arborele binar

organizat pe niveluri ca fiind:

Gru= NrN *Liu (32.8)
NrN = (Liu+2=*Lgp)+ Lgcpl

Pentru un arbore binar, in care nodurile sunt definite prin secventa de
program C++:

struct nod{
info * inf;
element * fiu_stang;
element * fiu_drept;

}:
se considera:
e X - numarul de noduri din arborele binar este 7 noduri;
e Liu - lungimea zonei de memorie ocupata de informatia utila a unui
nod este de 78 baiti;
e Lgp - lungimea zonei de memorie ocupata de variabilele pointer

asociate nodului descendent stang si nodului descendent drept

este in total de 4 baiti;

e Lgcpl/ - lungimea zonei de memorie ocupata de variabila pointer spre
nodul radacina este de 2 baiti;

ceea ce conduce la valoarea gradului de ocupare:

G NrN=Liu (32.9)
ru= - .
NrN=*(Liu+2=*Lgp)+ Lgcpl

Rezulta ca valoarea gradului de utilizare este:

778
ru=
7+ (78 +2%2)+2

=0.9479 (32.10)

Pentru structura de date arbore B de grad m cu x noduri in care
structura unui nod este reprezentata in figura 32.1:

Informatie Informatie Informatie
/ utila 1 utila 2 . utila 2*m \
/ descendent descendent \
stang drept

Figura 32.1 Modelul grafic al elementului dintr-un arbore B

>

~

4

Figura 32.2 Reprezentarea grafica a arborelui B

Pentru arborele B din figura 32.2 gradul de utilizare al memoriei este:

X*2+mx*Liu
~ x*(2*mxLiu+2+*Lgp+Lgp

Gru (32.10)

Arborele B de ordin m are noduri ce contin:

- pointer spre descendentii corespunzatori informatiei utile;

- informatie util3;
asa cum sunt definiti in capitolul 13 de arbori B. Daca se considera definirea
nodului din capitolul 13, atunci pentru un arbore B a carui structura este:

struct element{
info * inf[2*m];
element * desc[2*m+1];

};

gradul de utilizare a memoriei se calculeaza:

Gru= _ x*2*mxLi (32.11)
X*2#m*Liu+x*(2+*m+1)*Lgp+ Lgcpl

rezultd pentru arborele B de gradul 1:

e X - numarul de noduri din arborele B este 9;

o Liu - lungimea zonei de memorie ocupata de informatia utila a unui
nod este de 78 baiti;

e Lgp - lungimea zonei de memorie ocupata de variabilele pointer
asociate nodurilor descendente este 2 baiti;

e Lgcpl - lungimea zonei de memorie ocupatd de variabila pointer spre

nodul radacina este de 2 baiti.
ceea ce conduce la valoarea gradului de ocupare:

. 9x2%1%78
O#2%]*T78+9%(2*1+1)*2+2

= 0.9499 (32.12)

32.4 Zone de memorie asociate grafurilor

Pentru structura dinamica graf definita ca lista de liste, cu o lista
principala asociata celor n noduri ale grafului si, respectiv, tot atatea liste
secundare, fiecare avand m; elemente corespunzatoare arcelor incidente
spre exterior nodurilor din graf. Se considera graful din figura 32.3.

Figura 32.3 Structura de tip graf

Pentru acest graf se construieste lista de liste din figura 32.4.

pb

1 > 2 > 3
¥

2 > 3 > 6
L

3 > 4 ™ 5
L

4 > 2
L

5 > 4 » 6
¥

6 > 4

Figura 32.4 Reprezentarea grafului prin liste de liste

Gradul de utilizare a zonei de memorie dintr-o structura de tip graf
reprezentat ca lista de liste in care:
o X

Liu

Lgps

Lgpb
Lgpp
Lgspu

Lgcd
Narc

- numarul de noduri din graf;

- lungimea zonei de memorie ocupata de informatia utila din
fiecare nod si care se memoreaza in lista de baza; informatia
utild contine obligatoriu codul nodului in raport cu care se
realizeaza identificarea arcelor incidente spre exterior;

- lungimea zonei de memorie din lista de baza ocupata de
variabila pointer de 2 baiti ce reprezinta pointer spre primul
element al listei secundare asociata arcelor descendente spre
exterior nodului;

- lungimea variabilei pointer de 2 baiti care refera primul
element din lista de baza;

- lungimea asociata spre urmatorul element din lista principala
de 2 baiti;

- lungimea pointer-ului spre elementul urmator din lista
secundara;

- lungimea codului pentru identificarea nodului destinatie;

- numarul total de arce din graf.

GruLp=—**Lu (32.13)
x*(Liu + Lgpp + Lgps) + Lgpd

Narc * L ged
Narc * (L gcd+ Lgspu)

GrulLS=

(32.14)

_ GruLP +GruLS
2

Gru

(32.15)

Pentru graful din figura 32.3 ale carui noduri sunt definite in lista de
baza prin secventa C++:

struct elemente_Lista Baza({
info * inf;

elementLS * arc;

elementLP * urm;

};

si urmatoarea structura pentru lista de arce:

rezulta:

X
Liu

Lgps

Lgpb
Lgpp
Lgspu
Lgcd

Narc

struct elementLS({
info * inf;
elementLS * urm;

numarul de noduri din graf este 6;
lungimea zonei de memorie ocupata de informatia utila din
fiecare nod este 78;
lungimea zonei de memorie din lista de baza ocupata de
variabila pointer de 2 baiti ce reprezinta pointer spre primul
element al listei secundare asociata arcelor descendente spre
exterior nodului;
lungimea variabilei pointer de 2 baiti care refera primul element
din lista de baza;

lungimea asociata spre urmatorul element din lista principala
de 2 baiti
lungimea pointer-ului spre elementul urmator din lista
secundara de 2 baiti;
lungimea codului pentru identificarea nodului destinatie este de
4 baiti;
numarul total de arce din graf este 10

GruLP= 6*78 =0.9473 (32.16)
6% (78+2+2)+2
104
GrulS=——""" _-0.6667 (32.17)
10%(4+2)
_0.9473+0.6667

Gru

=0.807 (32.18)

In cazul reprezentdrii grafurilor prin vectori de pointeri gradul de
utilizare al zonei de memorie se calculeaza diferit.

Pentru graful definit in figura 32.3, reprezentarea prin vectori de
pointeri este:

PVEC

1 > 2 » 3
2 > 3 > 6
3 > 4 > 5
4 S
5 » »
> 4 > 6
6
> 4

Figura 32.5 Reprezentarea prin vectori de pointeri

rezulta ca trebuie luate in considerare urmatoarele variabile:
o X

Lgve

Lgpv
Lgspu

Lgcod

Lgpa
Narc

- numarul de elemente din vectorul de pointeri;

- lungimea unui element din vectorul de pointeri care se obtine
din lungimea informatiei utile Liu la care se adauga pointerul
spre capul de lista a arcelor incidente spre exterior nodului, adica
Lgve=Liu + Lgp,

- lungimea variabilei pointer de 2 baiti catre vectorul de baz3;

- lungimea pointer-ului spre elementul urmator din lista
secundara de 2 baiti;

- lungimea zonei de memorie in care se stocheaza codul nodului
destinatie;

- lungime pointer din lista de arce;

- numarul de arce din graf.

Gradul de ocupare a zonei de memorie se obtine din relatia:

Gruvp=— X*Lave (32.19)
X *Lgve + Lgpv
GruLs=—varc*Lgcd (32.20)
Narc * (L gcd+ Lgspu)
Gru= GruVP;GruLS (32.21)

Pentru graful dat in figura 32.3 cu urmatoarea structura:

struct elementVP{
info * inf;
elementLS * urm;

};

si urmatoarea structura pentru lista de arce:

struct elementLS{
info * inf;
elementLS * urm;

};

rezulta ca pentru:
° X

Lgve

Lgpv
Lgspu

Lgcod

Lgpa
Narc

- numarul de elemente din vectorul de pointeri egal cu 6;

- lungimea unui element din vectorul de pointeri care se obtine
din lungimea informatiei utile Liu la care se adauga pointerul spre
capul de lista a arcelor incidente spre exterior nodului, adica
Lgve=Liu + Lgp = 80 de baiti;

- lungimea variabilei pointer de 2 baiti catre vectorul de baza;

- lungimea pointer-ului spre elementul urmator din lista
secundara de 2 baiti;

- lungimea zonei de memorie in care se stocheaza codul nodului
destinatie egala cu 4 baiti;

- lungimea pointerului din lista de arce de 2 baiti;

- numarul de arce din graf este 10;

gradul de utilizare este:

6%80
GruVP=——"—_=0.9958 (32.22)
6%80+2
10+4
GrulS=——— =0.6667 (32.23)
10% (4 +2)
_0.9958+0.6667

Gru =0.8312 (32.24)

Graful din figura 32.2 definit ca listd de pointeri are modelul
reprezentat in figura 32.6.

<1.,2> <1.3> <6,5> <6.1>

cpl

L NI —P NIITIT

NULL

<4.2>
—
I .
ld NULT
<3.4> <3.5>
| ' NUTLI
NUTLT
<2.3> <2.6>

<6.4>

Figura 32.6 Reprezentarea grafului prin lista de pointeri

Se iau in considerare variabilele:
° X

Liu

Lgps

Lgpb
Lgpp
Lgspu

Lgcd
Narc

- numarul de noduri din graf;

- lungimea zonei de memorie ocupata de informatia utila din
fiecare nod si care se memoreaza in lista de baza; informatia utila
contine obligatoriu codul nodului in raport cu care se realizeaza
identificarea arcelor incidente spre exterior;

- lungimea zonei de memorie din lista de baza ocupata de
variabila pointer de 2 baiti ce reprezinta pointer spre primul
element al listei secundare asociata arcelor descendente spre
exterior nodului;

- lungimea variabilei pointer de 2 baiti care refera primul element
din lista de baza ;

- lungimea asociata spre urmatorul element din lista principala de
2 baiti;

- lungimea pointer-ului spre elementil urmator din Ilista
secundara;

- lungimea pointerului pentru identificarea nodului destinatie;

- numarul total de arce din graf.

Grulp=—X*Lu (32.25)
x*(Liu + Lgpp + Lgps) + Lgpb

Narc * Lgpd
Narc *(Lgpd + Lgspu)

GrulLS= (32.26)

De exemplu, fie urmatoarea structura:

struct elementLP{
info * inf;
elementLS * arc;
elementLP * urm;

};

si urmatoarea structura pentru lista de arce:

struct elementLS({
elementLP * urm;
elementLS * arc;

rezulta ca pentru:
X

Liu

Lgps

Lgpb
Lgpp
Lgspu
Lgcd

Narc

- numarul de noduri din graf este 6;

- lungimea zonei de memorie ocupata de informatia utila din
fiecare nod si care se memoreaza in lista de baza; informatia utila
contine obligatoriu codul nodului in raport cu care se realizeaza
identificarea arcelor incidente spre exterior este 78;

- lungimea zonei de memorie din lista de baza ocupata de
variabila pointer de 2 baiti ce reprezintd pointer spre primul
element al listei secundare asociata arcelor descendente spre
exterior nodului;

- lungimea variabilei pointer de 2 baiti care refera primul element
din lista de baza;

- lungimea asociata spre urmatorul element din lista principala de
2 baiti;

- lungimea pointer-ului spre elementul urmator din lista
secundara este de 2 baiti;

- lungimea pointerului pentru identificarea nodului destnatie; este
de 2 baiti;

- numarul total de arce din graf este 10.

gradul de utilizare este:

GruLP= 6*78 =0.9473 (32.27)
6%(78+2+2)+2
Gruls=—%*2 __ o5 (32.28)
10%(2+2)

_0.9473+0.5

Gru =0.7236 (32.29)

Atunci cadnd se doreste cresterea vitezei de referire a elementelor prin
includerea de variabile pointer se va obtine scaderea gradului de utilizare a
memoriei

In cazul in care se doreste sortarea crescatoare si sortarea
descrescatoare a elementelor unei liste simple cu memorarea vechilor pozitii
ale elementelor, sunt necesari 3 pointeri cap de lista:

- un pointer pentru a referi elementele cu vechea ordine;

- un pointer pentru a referi elementele dipuse in ordine crescatoare;

- un pointer pentru a referi elementele in ordine descrescatoare.

In mod corespunzator, vor fi definiti in fiecare element 3 pointeri
pentru a conserva legaturile listei sortate crescator si descrescator, precum
si legaturile listei nesorate. Atunci:

X * Liu
Gru= -
x* (Liu +3=Lgp)+ 3 * Lgcpl

(32.30)

Pentru a gestiona modificarile din structura se defineste o variabila
care are valoarea 0 daca nu s-a produs nici o modificare dupa realizarea
sortarii si, respectiv, 1 in caz contrar. Inainte de a se trece la o noua sortare
a elementelor din structura se va testa aceasta variabild. In cazul in care
are valoarea 0 sortarea anterioara este considerata operatie valida si
elementele structurii sunt folosite ca atare. In cazul in care variabila este 1
se va trece la efectuarea unei noi sortari incat structura a suferit modificari
in raport cu sortarea precedenta.

32.5 Zone de memorie asociate masivelor

In cazul masivelor definite static cu x elemente, prin una din
instructiunile:

tip nume[x];
tip nume[m][n];
cu X = m*n, gradul de utilizare este:

_ x*Liu _
X * Liu

Gru 1 (32.31)

Pentru masivele alocate dinamic, cu x elemente gradul de utilizare
este:

Gru=—X*L (32.32)

X * Liu + Lgcpl

In cazul unui masiv unidimensional cu 142 de elemente alocat
dinamic, avand modelul grafic din figura 32.7.

142

~—"T

1 2 3)

/
Figura 32.7 Masiv unidimensional alocat dinamic

N

avand definirea:
int * vector = new int [142];
gradul de ocupare este:

Gru=—22*% __5 9965 (32.33)
1424442

Masivul bidimensional alocat dinamic este caracterizat prin
variabilele:

o Liu - lungimea informatiei utile;
e N - numarul de linii;
em - numarul de coloane;

e Lgpm - lungimea pointerului catre primul elment al matricii;
e Lgpvc - lungimea pointerului catre vectorii linie.
avand definirea:

int ** matrice;
matrice = new int [n];

for(i=0;i<n;i++)
matrice[i] = new int[m];

Gradul de utilizare al memoriei este dat de relatia:

Gru= _m*n*Li (32.34)
msn=Liu+n=*Lgpvc+ Lgpm

Pentru un masiv bidimensional alocat dinamic de 142 de elemente, cu
modelul grafic dat in figura 32.8.

\ 4

142

Figura 32.8 Masiv bidimensional alocat dinamic

si cu definirea din secventa:

int ** matrice;
matrice = new int [71];

for (i=0;i<71;i++)
matrice[i] = new int[2];

gradul de utilizare este dat de relatia:

2%71%4

Gru=
2471 %44+T71%2+2

=0.7977 (32.35)

Acest indicator, impreuna cu indicatorii de performanta ai aplicatiei
informatice privind comportamentul estimat al acesteia la utilizator
contribuie la completarea imaginii pentru fiecare varianta de program
bazata pe o anumita structura de date inclusa in el. Se prefera realizarea
unui echilibru intre dimensiunea resurselor utilizate, complexitatea
expresiilor de referire si viteza de acces la informatia solicitata de fiecare
beneficiar in parte.

