
 29. STRUCTURI FOLOSITE ÎN PROCESE DE CĂUTARE

29.1 Tipologii de aplicaţii

Aplicaţiile informatice diferă funcţie de obiectivele pentru care au fost

elaborate.
Tipologiile aplicaţiilor sunt considerate în raport cu criterii de

clasificare elaborate atât de elaboratori, cât şi de dealeri, dar mai ales de
către clienţi.

După criteriul structurii, aplicaţiile informatice sunt:
- seriale, în care componentele sunt referite una câte una; calitatea

execuţiei componentei precedente determină referirea
componentei următoare în secvenţă şi deci, execuţia întregului
lanţ;

- arborescentă, caz în care componentele se dispun pe niveluri şi
referirea depinde de evaluarea unei expresii relaţionale; sunt
situaţii în care pe o ramură a arborescenţei prelucrările conduc la
rezultate corecte, în schimb pe alte ramuri rezultatele sunt
incerte;

- reţea, care presupune atât execuţii în secvenţă cât şi evaluări de
expresii relaţionale; referirile sunt uneori comune pentru mai
multe componente, atât pentru componente următoare, cât şi
pentru componente precedente ca poziţie, care devin următoare
în execuţie.

Abordările moderne impun clasificări spre constituirea de clase, de
module, de interacţiuni, ceea ce conduce la construcţii simple, medii sau
complexe.

De asemenea, în raport cu evoluţiile ulterioare se caută accentuarea
laturilor de mentenanţă sau portabilitate. Aplicaţiile informatice sunt sau nu
sunt înzestrate cu anumite proprietăţi, caz în care sunt incluse într-una din
categoriile aparţinând criteriilor care se definesc ad-hoc. Din punct de
vedere al utilizatorilor, aplicaţiile informatice sunt:

- pentru un singur client, de regulă specializat în realizarea de
prelucrări complex şi este vorba de aplicaţii particulare, cu volum
mare de decizii care presupun nivele de agregare ridicate;
aplicaţia presupune numeroase convenţii referitoare la tipurile de
operaţii, procedurile care se activează şi ramurile care se
traversează în reţeaua asociată; există numeroase puncte de
intervenţie pentru a actualiza parametrii şi chiar proceduri de
calcul şi de selecţie a datelor din bazele de date pentru a urmări
dinamica sistemului economic din care aplicaţia este parte;

- cu număr restrâns de utilizatori, destinate lucrului cu baze de
date al căror volum de actualizare este ridicat; aplicaţiile sunt
specializate iar operatorii sunt profesionişti în domeniu; se
definesc tipologii de operaţii cărora le corespund coduri de
selecţie şi date de intrare specifice; se urmăreşte rezolvarea de
probleme într-o interval dat de timp, cu controlul riguros asupra
volumului de date; se elaborează chei de control pentru
garantarea calităţii datelor de intrare care garantează la rândul lor
calitatea rezultatelor; aceste aplicaţii determină plăţi, acceptarea
unor stări de fapt, selecţia de candidaţi şi alte forme de tranzacţii

sau de construire a argumentaţiilor; operatorii sunt instruiţi atât
în utilizarea produselor software, cât mai ales în semnalarea de
erori în efectuarea de corecţii acolo unde este posibil;

- număr de utilizatori foarte mare, de masă, cu grad de
neomogenitate ridicat; interfeţele sunt astfel construite încât toţi
utilizatorii să obţină maximum de satisfacţie; se impune ca aceste
aplicaţii să fie atent elaborate, să ţină seama de cerinţele reale
ale utilizatorilor şi să nu necesite procese de instruire speciale; în
cazul în care numărul de paşi care se parcurg este indicat,
trecerea de la un pas la altul este marcată prin comenzi de acelaşi
tip; problema rescrierii la pasul iniţial (de start) se va realiza de la
oricare din etapele interacţiunii; neomogenitatea clienţilor impune
utilizarea de interfeţe grafice; clientul trebuie să obţină maximum
de beneficii cu minimum de date introduse de la tastatură; se
efectuează o cercetare sistematică pentru a evidenţia care sunt
situaţiile destinate care trebuie trataţi pentru cazurile cu frecvenţa
cea mai mare se definesc fluxuri de opţiuni care prin tastări
simple să conducă la traversarea de paşi şi obţinerea de efecte în
concordanţă cu aşteptările utilizatorilor; clienţii efectuează un
număr limitat de selecţii, iar modul de reprezentare a datelor
reduce repetitivitatea de operaţii generată de erori de
interpretare; simplitatea dialogului om-maşină, lipsa de rigiditate
şi luarea în considerare a tipurilor de clienţi cu comportamentul
specific are rolul de a genera aplicaţii informatice destinate de
succes, viabile.

29.2 Chei de regăsire

Aplicaţiile informatice cele mai frecvente sunt caracterizate prin

utilizarea în procesul de regăsire a unei singure chei.
De regulă, în procesul de analiză a problemei de rezolvat se parcurg

următorii paşi:
- se identifică mulţimile cu care se operează precum: mulţimea

persoanelor, mulţimea materialelor, mulţimea documentelor,
mulţimea operaţiilor etc;

- se stabilesc numărul maxim de componente care alcătuiesc
mulţimile;

- se alege algoritmul de căutare a cheilor aşa fel încât să se asigure
unicitatea în concordanţă cu apartenenţa elementelor colectivităţii
la eventuale submulţimi;

- se generează mecanisme de stare şi de căutare care să reducă
duratele de prelucrare.

În cazul în care dinamica înregistrată de colectivitate permite să
construim chei numerice.

Pentru salariaţii unei întreprinderi, marca salariatului – unică – este
un număr. Salariatul X are marca 7250, ceea ce înseamnă că a fost a 7250
a persoană care s-a angajat. Cei dinaintea sa mai lucrează, s-au transferat
sau au plecat la pensie.

Aplicaţiile bazate pe marca salariatului impun manipularea unei
legitimaţii în mod obligatoriu.

În cazul în care se doreşte diferenţierea muncitorilor pe secţii se face
o codificarea secţiilor şi o codificarea a muncitorilor şi se concatenează cele
două coduri, rezultând marca muncitorului. De exemplu, pentru o
întreprindere cu 25 de secţii numerotarea secţiilor se face cu 01, 02, …, 25,
iar pentru codul muncitorului se constituie secvenţe formate din patru cifre.

Marca salariatului 140014 arată că este vorba de salariatul de la
secţia 14, având codul 0014 în codul secţiei respective. Aplicaţiile bazate pe
o singură cheie sunt proiectate astfel încât să se poată gestiona cu uşurinţă
toate datele. Simplitatea acestor aplicaţii impune un nivel ridicat de
rigiditate. Generarea codurilor în mod serial corespunzătoare mulţimilor
omogene face dificil procesul de regăsire atunci când lipseşte suportul pe
care este indicat codul elementului ce trebuie căutat. Elaborarea de structuri
care se asociază cheilor şi a mecanismelor de continuare a elementelor
elimină parţial acest impediment.

Este important ca părţile ce formează structura să fie alcătuit din
mulţimi deja existente, cunoscute, iar numărul de elemente generate să fie
cât mai restrâns.

Dacă o firmă comercializează produse electrocasnice, autoturisme şi
materiale de construcţii către persoane fizice codul contractului este o
construcţie rezultată din concatenarea secvenţelor de numere următoare:

- secvenţa corespunzătoare tipului de produs achiziţionat;
- secvenţa de identificare a cumpărătorului.
Se stabileşte un algoritm de construcţie a codului contractului.

Fiecare literă din alfabet are o poziţie: litera a are poziţia 01, litera b are
poziţia 02, litera i are poziţia 09, litera r are poziţia 17 etc.

Lunile anului se numerotează 01 (ianuarie) sau 07 (iulie) şi 12
(decembrie). Zilele lunii se numerotează de la 01 la 31. Anul de naştere se
numerotează cu patru cifre pentru a elimina ambiguităţile de tipul celei
generate de trecerea la anul 2000.

Dacă sunt luate în considerare şi părţi din numele persoanei fizice
care achiziţionează produse, cu certitudine este asigurată unicitatea codului
contractului.

Dacă structura codului de control este descrisă prin:
- poziţia 1: tipul produsului E – electrocasnice, A – autoturism, C –

material de construcţii;
- poziţiile 2, 3, 4, 5: anul naşterii cumpărătorului;
- poziţia 6,7: luna naşterii cumpărătorului;
- poziţia 8,9: ziua de naştere a cumpărătorului;
- poziţiile 10, 11, 12: primele 3 litere din numele cumpărătorului la

completare se asigură unicitatea codului contractului ca cheie de
regăsire.

Întrucât un rol esenţial în evidenţe îl are codul numeric personal, în
dezvoltarea aplicaţiilor moderne va fi inclus în structura cheilor în vederea
regăsirii.

În operaţiile cu clienţii posesivi de posturi telefonice numărul postului
şi codul personal deja formează un cod redundant.

La proiectarea cheilor de regăsire este preferabil să fie utilizate
secvenţe care descriu elemente deja existente precum:

- două litere ce reprezintă prescurtările numelui de judeţ;
- literă M, F prin care se indică sexul persoanei;
- data naşterii prezentată prin an, lună, zi;
- alte componente din structura codului personal;

- cuvinte prin care se desemnează în clar produse (telefon, frigider,
cuier, tablă, cablu, geam);

- denumiri de localităţi, străzi, instituţii.
Schimbarea concepţiei privind definirea cheilor rezidă din trecerea de

la aplicaţiile bazate pe informaţii simple utilizate în programul de regăsire,
oferite complet, după reguli specificate, la aplicaţii cu clienţi diferiţi,
neomogeni ca pregătire în raport cu o aplicaţie informatică, unde regăsirea
trebuie să se facă dacă informaţiile pe care clientul le are.

Cheile de regăsire sunt numeroase şi la proiectarea aplicaţiilor se
impune comutarea de arborescenţă ale cor frunze sunt de fapt codurile
unice.

În cazul informaţiilor incomplete sunt extrase submulţimi dintre care
este identificat elementul căutat.

De exemplu, se ia în considerare codul numeric personal, căruia i se
asociază arborescenţa dată în figura 29.1.

1

01

2

99i
01 99 i

Sex

anul

i

31 01

J

01 31

- - - -
Secvenţa

Jim
K

- - - - - -

- - - - - -

Figura 29.1 Structura arborescentă asociată CNP

Este important ca la un volum cât mai restrâns de date de intrare să

se obţină o fineţe de selecţie cât mai bună
Pentru efectuarea de studii statistice se ajunge la forma de structură

arborescentă care să genereze un număr cât mai restrâns de elemente.
În cazul persoanelor încorporabile anul naşterii conduce la submulţimi

formate din multe elemente.
În schimb ziua de naştere urmată de luna de naştere conduce la o

mulţime de elemente din care se extrage cu uşurinţă un element pentru a
efectua prelucrări solicitate.

Problema cheilor de regăsire trebuie rezolvată adecvat pentru a
genera echilibrul aplicaţiilor informatice şi pentru a reflecta particularităţile

evoluţiei fiecărei aplicaţii în parte, în raport cu clienţii cărora este destinată.
Se au în vedere aplicaţiile distribuite cu accesul direct al clienţilor.

Este important să se utilizeze pentru regăsire chei grafice date sub
forma unor simboluri, liste de cuvinte care corespund numelor de localităţi,
denumiri de produse, mărci de produse, categorii de produse, valori
numerice, denumiri de evenimente etc.

Este important ca fiecare client să tasteze cât mai puţine informaţii
de intrare, iar produsul software să aibă o serie de algoritmi de normalizare
care să conducă la realizarea acelui nivel de flexibilitate cerut aplicaţiilor
distribuite care se adresează publicului larg.

Astfel, dacă se doreşte un număr de telefon al unei persoane vor fi
solicitate următoarele date:

Numele: x x x…x
Prenumele: x x x …x
Oraşul: lista de oraşe
Localitatea în ordine alfabetică sau posibilitatea de a tasta altă localitate
Strada: x……x
Bloc: xxx
Apartament: xxx
Număr: xxxx

Atunci când aplicaţia este destinată utilizatorilor specializaţi sau care

au efectuat un stagiu de instruire, introducerea datelor este clară, întrucât
meniul este suficient de riguros.

În cazul utilizatorilor cu grad de instruire, cu cunoştinţe incomplete
asupra modului de formulare a cererii apar următoarele situaţii:

- numele este ortografiat astfel decât forma stocată în baze de
date; de exemplu Brâncuşi din baza de date poate fi tastat
BRINCUŞ sau Brâncuş sau Brancusi sau Brancus;

- numelui îi lipseşte o vocală sau o consoană dublă; de exemplu,
cuvântul BELLER este ortografiat Beler sau Belăr, Johnson este
ortografiat Jonson

- numele este interschimbat cu prenumele; Bălcescu Nicolae este
ortografiat Nicolae Bălcescu

- prenumele este înlocuit cu o literă sau grup de litere; Nicolae e
scris N Gheorghe e scris Gh. sau este înlocuit cu un formular sau
diminutiv. Ion este înlocuit cu Nelu, Dan este înlocuit cu Daniel,
Gheorghe este înlocuit cu Gică sau Gicu sau Gigel. Aceleaşi
probleme sunt puse şi în cazul ortografiei cu litere mari. În cazul
în care numele şi prenumele este introdus într-o singură rubrică
cea a numelui se impune o operaţie opusă concatenării.

Se consideră colectivitatea A = {a1, a2, …, an} pentru care un element
ai este descris prin şablonul Sc definit de caracteristicile sc1, sc2, …, scm în
mulţimea Sc = {sc1, sc2, …, scm}. Pentru elementul ai se generează şirul de
caractere cij pentru a specifica şirul caracteristicii Scj din şablon.

Descrierea este completă atunci când pentru toate elementele
colectivităţii A au fost măsurate sau generate şiruri de caractere pentru
toate caracteristicile ce definesc şablonul. O astfel de definire este dată în
tabelul 29.1.

Tabelulul nr. 29.1 Măsurarea elementelor colectivităţii materialelor

Denumire Cod U.M. Stoc

iniţial
Intrări Ieşiri Preţ

unitar
Var 100 kg 100 10 50 5
Ciment 122 kg 500 30 200 100
Cărămidă 400 buc. 10000 1000 5000 1
Cuie 310 kg. 100 50 25 25
Rigips 133 buc. 200 20 50 60

Sunt situaţii în care nu sunt efectuate definiri complete sau
măsurători datorită neluării în considerare a caracteristicilor sau datorită
costurilor foarte ridicate de a măsura, aşa cum se prezintă în tabelul 12.2.

Tabelul nr. 29.2 Înregistrări incomplete pentru colectivitatea elevilor

Nume Sex Data
naşterii

Înălţime
(cm)

Şcoală

Popescu Ion M 10.08.1985 173 174
Alexandrescu M 180 174
Gheorghe Ion M 11.05.1984 3
Pana Marius 14.03.1984 165
Popescu Alina F 10.07.1985 167 3
Jderu Ioana F 22.05.1984 165

Pentru fiecare dintre elementele mulţimii A se stabilesc şiruri de
caractere care se constituie în vocabularul asociat colectivităţii A.
Se iau în considerare frecvenţele de apariţie ale cuvintelor.
Pentru o colectivitate B definită în tabelul se măsoară frecvenţele de apariţie
a cuvintelor în vocabular.

Tabelul nr. 29.3 Nivelurile generate pentru caracteristicile C1, C2, C3 şi C4

care definesc colectivitatea B

C1 C2 C3 C4
aa x u wwww
bbb yy u zzz
cc x vvv zzz
dddd x vvv zzz
e yy u zzz
ffff x u zzz
g yy u wwww
h yy vvv zzz
iii yy vvv zzz
jj yy vvv zzz

Vocabularul asociat colectivităţii A, VA este definit de şirurile de

caractere VA = {aa bbb cc dddd e ffff g h iii jj x yy u vvv wwww zzz}.
Frecvenţele de apariţie a cuvintelor sunt date pentru caracteristici în

tabelul 29.4

Tabelul nr. 29.4 Frecvenţele pentru caracteristicile C1, C2, C3 şi C4 care
definesc colectivitatea B

Cuvânt fC1 fC2 fC3 fC4

aa 0 0 0 0
bbb 0 0 0 0
cc 0 0 0 0
dddd 0 0 0 0
e 0 0 0 0
ffff 0 0 0 0
g 0 0 0 0
h 0 0 0 0
iii 0 0 0 0
jj 0 0 0 0
x 0 0 0 0
yy 0 0 0 0
u 0 0 0 0
vvv 0 0 0 0
wwww 0 0 0 0
zzz 0 0 0 0
TOTAL: 10 10 10 10

Analizând frecvenţele rezultă că subvocabularul VC1 este format din

cuvinte ce constituie chei unice în timp ce vocabularele VC2, VC3 şi VC4 au
un şir de cuvinte mult mai restrâns şi un şir se atribuie mai multor elemente
din colectivitatea B.

Compararea şirurilor de caractere este o operaţie uzuală care
evidenţiază măsura în care şirurile diferă sau nu unele de celelalte.

Dacă se consideră mulţimea şirurilor de caractere S = {C1, C2, …,
Cnsir)

Se calculează indicatorul de asemănare AS după relaţia:

2
nsirC

KS
AS  (29.1)

unde:
 KS – numărul de şiruri identice;
 2

nsirC – numărul combinaţiilor din mulţimea S de şiruri luate câte două.

În mulţimea S0 = {aa, bb, cc, dd} perechile care se construiesc sunt
în număr de = 6. Acestea sunt: 2

4C

(aa, bb), (aa, cc), (aa, dd), (bb, cc), (bb, dd) şi (cc, dd) (29.2)

Aceste perechi de şiruri sunt date diferite, rezultând KS = 0 şi
indicatorul AS(S0) = 0.

În cazul mulţimii de şiruri:

S1 = {aa, bb, cc, aa} (29.3)

rezultă perechile:

(aa, bb), (aa, cc), (aa, aa), (bb, cc), (bb, aa) şi (cc, aa) (29.4)

Cum operaţia de comparare este comutativă rezultă că operaţiile de

comparare aplicate perechilor de şiruri (aa, bb) şi (bb,aa) conduc la acelaşi
rezultat. O situaţie identică se regăseşte şi în cazul perechilor (aa, cc) şi (cc,
aa).

Indicatorul AS(S1) este:

AS(S1) =
6

3
=

2

1
 (29.5)

Se defineşte indicatorul:

2

2

)(
n

m
Si C

C
AS  (29.6)

unde:
 m – numărul de cuvinte diferite din mulţime;
 n – numărul total de cuvinte;

2
4

2
3

)1(C

C
AS S  =

2

1
 (29.7)

Cu cât valoarea indicatorului AS tinde către 1, cu atât rezultă că

şirurile datorită asemănării dintre nu se constituie într-o mulţime de chei de
regăsire a informaţiei. Concatenarea şirurilor este operaţia prin care două
şiruri Ci şi Cj se alipesc rezultând un nou şir Cij = Ci || Cj.
Dacă se consideră mulţimile de şiruri S1 şi S2 cu acelaşi număr de
componente

S1 = {C1, C2, …, Cnsir} (29.8)

S2 = {d1, d2, …, dnsir} (29.9)

prin concatenarea elementelor li = ci || di rezultă mulţimea:

S3 = {l1, l2, …, lnsir} (29.10)

Indicele de asemănare pentru mulţimile S1, S2 şi S3 trebuie să difere
astfel încât:

AS(S1) ≥ AS (S3) şi AS(S2) ≥ AS (S3) (29.11)

numai în cazul în care mulţimile S1 şi S2 sunt identice aceste condiţii nu
sunt îndeplinite.

Pentru S1 = {a, b, c, d} şi S2 = {x, y, z, w} rezultă valorile:

AS(S1) = 0; (29.12)

AS(S2) = 0; (29.13)

iar mulţimea S3 generată, are valorile

S3 = {ax, by, cz, dw}şi AS(S3) = 0 (29.14)

Se observă că în ipoteza AS(S1) = 0, AS(S2) = 0 rezultă AS(S3) = 0.
Pentru S1 = {a, b, c, a} şi S2 = {x, y, z, x} rezultă:

AS(S1) =
2

1
; AS(S2) =

2

1
; AS(S3) =

2

1
; S3 = {ax, by, cz, ax} (29.15)

Pentru S1 = {a, b, c, a} şi S2 = {x, y, y, w} rezultă:

AS(S1) =
2

1
; AS(S2) =

2

1
; AS(S3) = 0; S3 = {ax, by, cy, aw} (29.16)

Concatenarea şirurilor corespondente din mulţimi presupune ca:
- mulţimile să aibă acelaşi număr de componente;
- operaţia să se efectueze pe elemente de pe aceeaşi poziţie din

fiecare mulţime.
Mulţimile de şiruri se dispun sub forma unor coloane într-un tabel cu

MS coloane şi NSIR linii dacă numărul de mulţimi de şiruri este MS şi
numărul de elemente într-un şir este NSIR, tabelul 29.5.

Tabelul nr.29.5 Agregarea şirurilor

Poziţie S1 S2 … Sj … SMS

E1 x11 x12 … x1j … x1MS
E2 x21 x22 … x2j … x2MS
… … … … … … …
Ei xi1 xi2 … xij … xiMS
… … … … … … …
ENSIR xNSIR1 xNSIR2 … xNSIRj … xNSIRMS

în care:
 Ei – poziţia elementului în şir;
 Sj – mulţimea j de şiruri;
 Xij – şirul de pe poziţia i din mulţime Sj.

Se calculează indicatorii AS(Si), i = 1,2, …, MS. Dacă există mulţimile
Si1, Si2, …, Sik pentru care indicatorii AS() = 0 rezultă că oricare din aceste
chei se folosesc drept cheie unică de regăsire a informaţiei.

Se construiesc cele mulţimi Sj = Si || Sj ale căror elemente

rezultă prin concatenarea de elemente corespondente.

2
MSC

Se calculează indicatorii:

AS(S11), AS(S12), …, AS(Sij)i>j, …, AS(SMS-1 MS) (29.17)

Dacă există indicatori cu valorile AS = 0 , acele mulţimi se utilizează
ca chei unice.

Procedeul de concatenare se extinde la trei, patru mulţimi până
rezultă mulţimea cu şirurile cele mai lungi obţinute din concatenarea celor
MS mulţimi.

S1, 2, …, MS =  (29.18)


MS

i
iS

1

De exemplu, se consideră mulţimile:

S1 = {a, b, c, d} (29.19)

S2 = {x, y, z, x} (29.20)

S3 = {1, 2, 3, 1} (29.21)

S123 = S1|| S2 || S3 = { ax1, by2, cz3, ax1} (29.22)

pentru care se determină valorile:

AS(S1) =
2

1
; AS(S2) =

2

1
; AS(S123) =

2

1
 (29.23)

Rezultă că operaţia de concatenare nu a condus la obţinerea unor

chei unice.
Bordarea este operaţia prin care unui tablou i se adaugă coloane sau

linii. Bordarea unei coloane cu valori pentru care indicatorul AS are valoarea
0 înseamnă adăugarea la tabloul dat a unei coloane de chei unice.

Se obţine în acest fel un nou tablou în care elementele se identifică
fără dificultate prin chei unice.

Atunci când cheia unică este adresa fizică a articolului sau poziţia pe
care articolul o ocupă în fişier, baza de date sau în depozitul de date,
procesul de regăsire a informaţiei este accelerat.

Dacă cheia unică este invariabilă atunci când rezultă din măsurătorile
caracteristicilor, îşi pierde acest caracter când se produce trecerea pe un alt
suport dacă cheia este rezultatul bordării cu o coloană de adrese.

Când cheia unică indică poziţia elementului prin inserare se produce
schimbarea de poziţie ceea ce impune existenţa unui algoritm recalculare a
adresei relative.

29.3 Algoritmi de căutare

Orice tip de aplicaţie informatică are componente de prelucrare a

datelor indiferent de tipul sau sursa de provenienţă a acestora. Obiectivul
este de a obţine rezultate, de a atinge obiectivul final pentru care a fost
dezvoltată aplicaţia, rezolvarea unei probleme bine definite.

Datele prelucrate de aplicaţie sunt stocate în colecţii conform şi sunt
aranjate conform unor metode considerate de programator importante şi
eficiente. Prelucrarea acestor date, presupune iteraţii în care seturi de una
sau mai multe valori sunt preluate din mulţime şi sunt introduse ca operanzi

în secvenţe de instrucţiuni. Pentru aceasta programatorul utilizează rutine
de căutare pentru a avea acces la valorile utilizate.

Algoritmii de regăsire au menirea de a identifica în mulţimea de
valori, articolul a cărui cheie este specificată.

În funcţie de complexitatea operaţiei de căutare, există următoarele
tipuri de algoritmi de regăsire:

- algoritmi bazaţi pe operaţii de comparare a cheii specificate cu
chei din mulţimea de articole; procesul se încheie atunci când
cheia specificată este localizat sau când a fost epuizată mulţimea
articolelor; performanţa algoritmilor este dată de numărul de
comparări;

- algoritmi în care se calculează pe baza cheii adresa relativă şi
adresa fizică a articolului; performanţa este dată de numărul de
operaţii şi de densitatea poziţionării articolelor.

În funcţie de locaţia datelor, operaţia de căutare are loc:
- în memoria internă a calculatorului; dimensiunea setului de date

este redusă însă procesul este caracterizat de viteza mare de
execuţie datorită efortului redus al procesorului de acces la date;
pentru a putea rula rutinele de căutare, la fiecare execuţie a
aplicaţiei trebuie construit setul de date deoarece acesta nu există
în afara memoriei rezervate aplicaţiei;

- în memoria externă, datele fiind stocate în fişiere pe diverse
suporturi de stocare; dimensiunea setului de date este foarte
mare, iar procesul este caracterizat de viteza redusă de
prelucrare datorită efortului procesor ridicat dat de citirea datelor
şi aducerea acestora în memoria internă; datele sunt
independente de aplicaţie din punctul de vedere al existenţei
acestora, nefiind nevoie să fie recreate de fiecare dată când
aplicaţia este lansată în execuţie;

- în memoria internă şi externă; se combină tehnicile de căutare în
memoria internă, aplicate unor structuri auxiliare, cu metodele de
acces la date stocate pe disc.

Legătura de interdependenţă dintre procesul de căutare şi structurile
de date are la baza necesitatea de a stoca informaţia fie în memoria virtuală
sau în cea externă într-o formă care să asigure integritatea datelor şi care
să permită ulterior citirea acestora.

Căutarea secvenţială este procesul prin care datele sunt regăsite prin
parcurgerea lineară a tuturor elementelor din mulţimea de date pornind de
la începutul acesteia. Procesul se finalizează cu regăsirea elementului căutat
sau cu atingerea sfârşitului colecţiei de date, lucru care indică terminarea
operaţiei de căutare. Figura 29.2 descrie modul în care este aplicată
căutarea secvenţială în cadrul unei colecţii de date formată din elementele
Elem1, Elem2, …, Elemn pentru a găsi valoarea XVal.

Elem1 Elem2 … Elemi … Elemn-1 Elemn

Elem1 == XVal Terminare
căutare

DA

NU

Figura 29.2 Căutarea secvenţială a unei valori într-o colecţie

Pentru a implementa într-un limbaj de programare această metodă se
ţine seama că aceeaşi rutină de verificare a valorii căutate se aplică pentru
fiecare element în parte.

int SecventialSearch(int * array, int arrayLength, int searchvalue){
 int i;
 for(i = 0; i < arrayLength; i++){
 if(array[i] == searchvalue)
 return i;

}
return -1;

}

În cazul în care structura de date utilizată pentru a stoca valorile

mulţimii este de tip listă simplu înlănţuită atunci rutina utilizată pentru
căutarea secvenţială a unei valori este ListSecventialSearch.

struct SLList
{
 int value;
 SLList *next;
};
SLList* ListSecventialSearch(SLList * head, int searchvalue){
 SLList *temp;
 for(temp = head; temp!=NULL; temp = temp->next){
 if(temp->value == searchvalue)
 return temp;
 }
 return NULL;
}

Această metodă de căutare este îmbunătăţită prin reducerea

numărului de comparaţii realizate în cadrul ciclului repetitiv, [Knut73],
tehnică specifică optimizării la nivel de text sursă, [Ivan07a].

int QuickSecventialSearch(int * array, int arrayLength,
int searchvalue){
 int i;
 array[arrayLength] = searchvalue;
 for(i = 0;; i++){
 if(array[i] == searchvalue)
 if(i==arrayLength)
 return -1;
 else
 return i; }}

Se observă că această metodă diferă prin:
- utilizarea unui element suplimentar pe poziţia arrayLength în

cadrul vectorului pentru a fi utilizat la verificarea condiţiei de
terminare a căutării;

- reducerea la unu a numărului de condiţii ce sunt evaluate la
fiecare iteraţie a ciclului repetitiv;

- inserarea unei noi condiţii de verificare a terminării căutării;
procesul se încheie de fiecare dată cu găsirea elementului căutat,
însă dacă acesta se găseşte pe poziţia arrayLength rezultă că
elementul nu se regăseşte în mulţime.

Această simplă modificare conduce la reducerea numărului de cicluri
maşină necesare realizării căutării. În ciuda faptului că a două metodă
necesită un element suplimentar în cadrul vectorului, volumul redus de
cicluri maşină reprezintă un efect mult mai important al procesului de
optimizare.

Pe baza metodelor de optimizare a textului sursă, [Ivan07a] se
maximizează viteza de căutare prin desfăşurarea ciclului repetitiv şi
multiplicarea numărului de elemente verificate. De exemplu secvenţa

int FastSecventialSearch(int * array, int arrayLength,
int searchvalue){
 int i;
 array[arrayLength] = searchvalue;
 for(i = 0;; i+=3){
 if(array[i] == searchvalue)
 if(i==arrayLength)
 return -1;
 else
 return i;
 if(array[i+1] == searchvalue)
 if(i==arrayLength)
 return -1;
 else
 return i+1;
 if(array[i+1] == searchvalue)
 if(i==arrayLength)
 return -1;
 else
 return i;
 if(array[i+2] == searchvalue)
 if(i==arrayLength)
 return -1;
 else
 return i+2;
 }
}

creşte la trei numărul de elemente verificate în cadrul fiecărei iteraţii.
Deoarece ciclul repetitiv se termină cu regăsirea elementului căutat pe o
poziţie 0 ≤ i ≤ arrayLength sau pe poziţia arrayLength nu are loc depăşirea
acestuia şi nu se generează o eroare de citire în afara vectorului.

Pe baza metodei parcurgerii secvenţiale a unei colecţii se defineşte
căutarea cu elemente sortate după valoarea cheii.

void SortSecventialSearch(int * array, int arrayLength,
int searchvalue){
 int i;
 for(i = 0; i < arrayLength; i++){
 if(array[i] >= searchvalue)
 break;
 }
 if(array[i]==searchvalue)
 return i;
 else
 return -1;
}

În cazul în care valoarea căutată se regăseşte în mulţimea de valori,

această metodă nu îmbunătăţeşte nivelul de eficienţă al căutării secvenţiale,
funcţia SecventialSearch. Rezultatele, minimizarea efortului prin reducerea
numărului de valori verificate, sunt evidente în cazul în care valoarea
căutată nu se află în mulţime. În această situaţie, ciclul repetitiv este
întrerupt dacă se întâlneşte un element cu valoarea mai mare decât cel
căutat şi nu se mai parcurge tot vectorul.

O altă metodă de căutare secvenţială se bazează pe frecvenţa de
referire a elementelor. Cu cât frecvenţa unui element este mai ridicată, cu
atât acestea sunt mai la început şi astfel numărul de comparări regăsirii lor
scade.

De exemplu, se consideră şirul cheilor de căutare pentru care se
înregistrează frecvenţele

a b c d
1 1 3 7

 (29.24)

Datele sunt aranjate astfel încât, cuvintele să fie sortate în ordinea

descrescătoare a frecvenţelor

7d 3c 1a 1b (29.25)

Utilizarea unei astfel de structuri presupune implementarea unui
câmp în structura de date utilizată pentru a înregistra numărul de căutări.
De exemplu, se consideră problema stocării studenţilor dintr-o facultate
pentru care se implementează structura

struct Student
{
 char nume[20];
 int varsta;
 int cod
 int frecventa;
};

Metoda utilizată la căutarea unui student după codul acestuia este

identică cu rutina SecventialSearch din punctul de vedere al algoritmului
implementat, însă ia în considerare actualizarea câmpului frecventa pentru
elementele căutate şi resortarea mulţimii.

Eficienţa acestei metode în raport cu o căutare secvenţială pe o
mulţime neordonată sau sortată se bazează pe faptul că în practică, fiecărui

element din mulţime i se asociază o probabilitate de utilizare în funcţie
problema ce trebuie rezolvată.

Există numeroase studii în acest domeniu, [Knut73], însă două reguli
stabilesc importanţa unui set restrâns de elemente, cu frecvenţă ridicată de
utilizare, în cadrul operaţiilor de căutare:

- conform legii lui Zipf, [Wiki07a], probabilitate de utilizare a
elementelor dintr-o mulţime respectă o distribuţie dată de relaţia

p1 =
1

c
, p2 =

2

c
, …, pN =

N

c
, cu c =




N

i i1

1
1

 (29.26)

acesta a observat în că frecvenţa celui mai utilizat k cuvânt este
invers proporţională cu poziţia sa în tabela de frecvenţe; astfel cel
mai utilizat cuvânt va apărea în texte de aproximativ de două ori
mai mult decât al doilea cel mai utilizat cuvânt; acesta, la rândul
său are de două ori mai multe apariţii decât al patrulea cuvânt din
lista de frecvenţe; spre deosebire de alte modele de distribuţie
artificiale, această teorie a fost stabilită pe cale empirică şi de
multe ori există situaţii reale în care se respectă;

- legea 80-20, sau principiul Pareto, [Wiki07a], este un model
empiric definit de economistul Vilfredo Pareto pe baza analizei
veniturilor Italiei; acesta a observat că 80% din veniturile Italiei
provin de la 20% din populaţie; principiul a fost extins pe baza de
cercetări şi în domeniu optimizării aplicaţiilor informatice prin
faptul că 80% din resurse sunt utilizate de către 20% din
componentele aplicaţiei; la nivel de viteză de execuţie, se observă
că 90% din prelucrările efectuate de program au loc la nivelul a
doar 10% din codul sursă;

Pentru a evita definirea de câmpuri suplimentare în interiorul
structurii de date cu scopul de a gestiona frecvenţa de utilizare, este
definită o metodă care se bazează pe principiul repoziţionării la începutul
colecţiei de date a fiecărui element căutat. Astfel, se obţine acelaşi rezultat,
prin poziţionarea elementelor căutate des la începutul mulţimii.

Repoziţionarea unui element în cadrul unui vector implică recopierea
elementelor, anterioare elementului mutat, pe poziţii următoare. Acest lucru
implică un efort suplimentar de prelucrare a datelor. Pentru a fi evitat,
colecţia de date este reprezentată printr-o listă simplă înlănţuită. În această
situaţie, repoziţionarea este echivalentă cu iniţializarea unui set restrâns de
pointeri.

Căutarea secvenţială cu elemente sortate după valoarea cheii este
îmbunătăţită prin algoritmul de căutare binară, ce presupune începerea
procesului dintr-un punct mai apropiat de valoarea căutată decât de la
început. Primul reper în procesul de căutare este definit de poziţia din mijloc
a şirului de valori sortate. În funcţie de mărimea relativă a valorii căutate
faţă de valoarea mediană, căutarea continuă în şirul elementelor aflate la
stânga sau la dreapta acesteia prin repetarea procesului.

Elem1 … Elemn/2-1 Elemn/2 Elemn/2+1 … Elemn

Elemmid == XVal Terminare
căutare

DA

Intervale de căutare

Elemmid > XVal Elemmid < XVal

Figura 29.3 Căutarea binară a unei valori într-o colecţie sortată crescător

Presupunând că procesul începe cu un vector de lungime LV = n
atunci poziţia mediană este determinată prin relaţia

mediana = (pozstart + pozfinal)/2 (29.27)

unde:
 mediana

– poziţia mediană;

 pozstart

– poziţia de start a intervalului de căutare; iniţial aceasta este
egală cu 0;

 pozfinal

– poziţia finală a intervalului de căutare; iniţial aceasta este
egală cu n.

Prin compararea valorii căutate cu valoarea de pe poziţia mediană se
determină:

- momentul găsirii, dacă cele două valori sunt egale;
- continuarea căutării în intervalul inferior, dacă valoarea căutată

este mai mică;
- continuarea căutării în intervalul superior, dacă valoarea căutată

este mai mică;
- încetarea procesului dacă valorile nu sunt egale şi nu există alte

intervale de valori.

void BinaraSearch(int * array, int arrayLength, int searchvalue){
 int middlevalue;
 int start = 0;
 int end = arrayLength-1;
 int middle;
 while(start <= end){
 middle = (start + end)/2;
 middlevalue = array[middle];
 if(searchvalue == middlevalue){
 printf("\n SEARCH VALUE FOUND !");
 return;
 }
 else
 if(searchvalue < middlevalue)
 end = middle -1;
 else
 start = middle +1;
 } }

Faţă de căutarea secvenţială, căutarea binară reduce cu mult numărul

de comparări, deoarece la fiecare iteraţie se elimină din aria de căutarea
jumătate din valorile neverificate.

Între tipurile de algoritmi de regăsire şi tipurile de structuri de date
utilizate în programare există o legătură strânsă de interdependenţă.
Semnificaţia legăturii este evidenţiată şi de faptul că au fost definite tipuri
particulare de structuri de date pentru a permite minimizarea efortului de
căutare şi regăsire a informaţiilor. Astfel de exemple, sunt definite de
structurile arborescente de căutare:

- arborii binari în care fiecare nod numit părinte are maxim două
noduri numite fiu între care există relaţia

Valfiu_stânga < Valparinte < Valfiu_dreapta (29.28)

regăsirea informaţiei în arborii binari de căutare se face prin
parcurgerea structurii şi prin verificarea în fiecare nod a egalităţii
dintre valoarea căutată şi cheia nodului curent; în cazul în care nu
există egalitate, se continuă procesul pe fiul din stânga sau pe cel
din dreapta în funcţie de sensul relaţiei dintre valorile comparate

struct BST
{
 int info;
 BST * right;
 BST * left;
}

void BinarySearchTreeSearch(BST * root, int info)
{
 if(! root)
 return;
 else
 {
 if(info == root->info)
 {
 printf("\n SEARCH VALUE FOUND !");
 return;
 }
 else
 if(info > root->info)
 BinarySearchTreeSearch(root->right, info);
 else
 BinarySearchTreeSearch(root->left, info);
 }
}

- pentru a creşte eficienţa operaţiei de căutare pe acest tip de

structură, se iau în considerare tipuri particulare de arbori binari,
ce sunt echilibraţi, AVL sau Roşu & Negru; structurile echilibrate
contribuie la creşterea eficienţei algoritmului de căutare prin
rearanjarea valorilor astfel încât să fie minimizat efectul situaţiei
cel mai puţin favorabile; în cazul arborilor binari de căutare,
situaţia cel mai puţin favorabilă este dată de obţinerea unei
structuri arborescente cu înălţimea egală cu numărul de

elemente, figura 29.4 (a); reechilibrarea acestei structuri, figura
3.4 (b), minimizează timpul de căutare deoarece înălţimea
structurii este minimizată şi astfel scade numărul maxim de
comparări ce trebuie efectuate pentru a găsi valoarea căutată;

9 7

7

5

3

5

9

1

3

1

(b)(a)

Figura 29.4 Tipuri de structuri arborescente binare de căutare.

echilibrarea arborilor de căutare nu influenţează rutina de
căutare, deoarece relaţia dintre valoarea nodului părinte şi
valorile nodurilor fiu se menţine; diferenţa se observă la nivelul
secvenţelor de cod de inserare, respectiv de ştergere a unei
valori, deoarece structura trebuie reechilibrată după fiecare
operaţie de acest tip;

- arborii B sunt structuri arborescente de ordin N echilibrate, în
care un nod poate conţine maxim 2*N chei şi minimum N chei, cu
excepţia nodului rădăcină care poate avea mai puţin de N chei;
această situaţie este întâlnită în momentul construirii arborelui B,
atunci când au fost inserate mai puţin de N chei; pentru fiecare
pereche de chei KValuei şi KValuei+1 cu i = 1..n există un nod fiu
NFi+1 pentru care:

KValuei < Valori_chei{NFi+1} < KValuei+1 (29.29)

Figura 29.5 descrie modul în care este definit un nod al arborelui B de

ordin N.

 Valori chei

KValue1 KValue2 KValuei… KValue2*N

… NF1 NF2 NF3 NFi NFi+1

…

… NF2*N NF2*N+1

Valori adrese noduri fiu

Nod arbore B de ordin N

Figura 29.5 Structura unui nod al arborelui B

Dacă se consideră implementarea structurii arborelui B prin
intermediul listelor de chei şi de noduri fiu atunci secvenţa de cod de
căutarea a unei valori este

typedef struct NodArboreB_liste;

struct ListaChei
{
 int valCheie;
 ListaChei * next;
};

struct ListaFii
{
 NodArboreB_liste * Fiu;
 ListaFii * next;
};

struct NodArboreB_liste
{
 int NrChei;
 ListaChei *capListaChei;
 NodArboreB_liste *NodParinte;
 ListaFii *capListaFii;
};

struct NodArboreB
{
 int chei[MAX_CHEI];
 int NrChei;
 NodArboreB * NodParinte;
 NodArboreB * NodFiu[MAX_CHEI+1];
};

void cautaValoare(NodArboreB *NodStart,int ValCheie, NodArboreB *&
NodGasit, int &pozCheie)
{
if(NodStart){
 int nrCheiNod = NodStart->NrChei;

if((ValCheie<NodStart->chei[0])&&(ValCheie>NodStart-
>chei[nrCheiNod-1]))
 if((NodStart->NodFiu[0] == NULL) && (NodStart-
>NodFiu[nrCheiNod])){
 Printf("\n Cheie inexistenta !");
 return;
 }
 for(int i=0;i<nrCheiNod;i++)
 if(ValCheie==NodStart->chei[i]){
 NodGasit=NodStart;
 pozCheie=i;
 }
 else
 if(ValCheie>NodStart->chei[i])

 break;
if((ValCheie<NodStart->chei[i]) && (NodStart->NodFiu[i]!=NULL))

cautaValoare(NodStart->NodFiu[i], ValCheie, NodGasit, pozCheie);
if((ValCheie>NodStart->chei[i-1]) && (NodStart-> NodFiu[i]!=NULL))

cautaValoare(NodStart->NodFiu[i], ValCheie, NodGasit, pozCheie);
 }
};

Pentru a gestiona informaţii stocate pe suport extern, limbajele de
programare pun la dispoziţia programatorilor funcţii de lucru cu fişiere. În
funcţie de tehnicile de stocare şi regăsire a datelor pe suport extern, sunt
definite:

- fişiere cu acces secvenţial în care adăugarea de noi înregistrări se
face întotdeauna la sfârşit, neexistând o procedură specială de
aranjare a datelor; fişierele cu acces secvenţial sunt
asemănătoare ca modalitate de lucru cu masivele unidimensionale
şi din acest motiv căutarea se realizează prin parcurgerea fiecărei
înregistrări până când se găseşte informaţia căutată sau până
când se ajunge la sfârşitul fişierului;

struct Student{
int ID;
char Name[10];
int Age;
}
void FILESearch(char * FileName, int SearchValue){
 Student value;
 FILE *pFile = fopen(FileName,"rb");
 while(!feof(pFile)){
 fread(&value,sizeof(Student),1, pFile);
 if(SearchValue == value){
 printf("\n FILE SEARCH VALUE FOUND !");
 return;
 }
 }
}

- fişierele cu acces direct sunt structuri de date externe, ce se

regăsesc pe disc, în care există o corespondenţă directă între
poziţia în fişier a unui element şi valoarea cheii de căutare;
deoarece această legătură se bazează pe unicitatea cheii şi pe
ipoteza că numărul de articole din fişier este egal cu valoarea
maximă a cheii de căutare, fiecare înregistrare din fişier se
găseşte în una din stările, validă sau ştearsă logică;

- fişierele de tip invers permit căutarea de informaţii pe bază de
chei compuse; sunt utilizate în situaţiile în care se caută
submulţimi de articole ce corespund unei filtrări multicriteriale;
pentru a minimiza spaţiul ocupat de fişierul invers se vor
implementa structuri pe biţi ce corespund criteriilor de căutare,
[Smeu04]; se consideră problema gestiunii elevilor dintr-un
judeţ; pentru fiecare se înregistrează date descrise de structura
elev;

struct elev
{
 char sex;
 char nationalitate;
 char cetatenie;
 char mediu;
 char nume[20];
 char note[10];
 int nrmatricol;
}

Deoarece o parte din câmpuri au valori fixe:

- câmpul sex ia valori în mulţimea {0 – masculin, 1 – feminin};
- câmpul nationalitate ia valori în mulţimea {0 – română, 1 – romă,

2 – maghiară, 3 – alta};
- câmpul cetatenie are valorile {0 – română, 1 – alta};
- câmpul mediu are valorile {0 – rural, 1 – urban};
Pentru că aplicaţia trebuie să permită căutări după aceste criterii se

defineşte o structură pe biţi:

struct elevI
{
 unsigned sex:1;
 unsigned nationalitate:2;
 unsigned cetatenie:1;
 unsigned mediu:1;
 unsigned :3;
};

ce defineşte elementele fişierului de tip invers utilizat în procesul de
căutare; motivul implementării unei structuri pe biţi este dat de minimizarea
spaţiului; setul de date al elevilor este gestionat prin intermediul a două
fişiere, unul ce conţine toate informaţiile şi unul ce conţine valorile
elementelor de tip elevI; legătura dintre cele două structuri de date externe
este definită de corespondenţa ce există între elementele de pe poziţii
identice; rolul fişierului invers, ce conţine doar valorile criteriilor utilizate la
căutare, este de a permite implementarea unui proces de căutare mult mai
eficient; operaţia de căutare multicriterială se realizează prin intermediul
variabilelor de tip mască şi fltru; masca este utilizată pentru a testa dacă
elementul analizat îndeplineşte criteriul de selecţie prin intermediul operaţiei
de sau exclusiv pe biţi; filtrul este utilizat pentru a aduce în prim plan doar
acele câmpuri care compun condiţia multicriterială de selecţie; figura 29.6
descrie procesul de selecţie a elevilor care au naţionalitatea română şi
provin din mediul urban;

Criteriu:
- nationalitate = 0;
- mediu = 1.

1 0 0 1 1 1 1 1

masca

sex nationalitate cetatenie mediu

1 0 0 1 0 1 1 1

filtru

sex nationalitate cetatenie mediu
OR b1 b2 b3 b b b b b

1 b b 1 b 1 1 1XOR

0 b b 0 b 0 0 0

valoare înregistrare

 == 0 dacă inregistrarea corespunde criteriului

Figura 29.6 Selecţia multicriterială prin intermediul fişierelor de tip invers

- fişierele indexate sunt fişiere secvenţiale pentru care se

construiesc o structură auxiliară de tip arbore care să eficientizeze

procesul de căutare; spre deosebire de fişiere secvenţiale,
căutarea înregistrării după o chei unică se face în totalitate în
structura arborescentă asociată fişierului; deoarece această
structură are forma:

struct IndexFisier
{

int ValoareCheie;
int PozitieFisier;

};

odată ce este găsită valoarea căutată, este determinată poziţia în
fişier a înregistrării respective; evitând o serie de citiri secvenţiale
din fişier prin secvenţa de instrucţiuni

int PozInregistrare = PozitieFisier – 1;
fseek(Fisier, PozInregistrare * sizeof(Inregistrare), SEEK_SET);

este citită înregistrarea căutată;

Cel mai eficient algoritm de căutare este acela în care fiecărei valori

din colecţia de elemente i se asociază o poziţie unică în cadrul mulţimii.
Astfel, pe baza valorii căutate se determină poziţia acesteia în cadrul
colecţiei.

În cadrul vectorilor, această abordare se implementează cu uşurinţă
deoarece asocierea dintre valoarea unei chei numerice întreagă şi poziţia
acesteia în vector se realizează prin:

- definirea unui vector cu număr de elemente egală cu valoarea
maximă posibilă a cheii de căutare;

- se stabileşte o valoare neutilizată în cadrul problemei de rezolvat
pentru a indica dacă elementul cu cheia căutată există; deoarece
vectorul reprezintă o zonă de memorie continuă, se
implementează principiul conform căruia elementele există sau
sunt şterse logic; pentru o cheie de căutare ce ia valori în
intervalul [0…255], valoarea -1 poate fi utilizată pentru a indică
inexistenţa elementului căutat în colecţie.

Principalul avantaj al căutării bazate pe acces direct este dat de
rapiditate cu care se găseşte elementul căutat sau este indicată inexistenţa
acestuia.

Pentru structura element funcţia de regăsire este descrisă în secvenţa
de cod

struct element
{
int cheie;
int valoare;
};
int DirectAccess(element* array, int arrayLength, int searchvalue)
{
 if(searchvalue >= arrayLength) return -1;
 else if(array[searchvalue].cheie == -1) return -1;
 else return array[searchvalue].valoare;
}

Cu toate acestea, în practică este evitată această soluţie directă care,
deşi minimizează timpul de regăsirea are efecte negative asupra:

- memoriei ocupate; dimensiunea spaţiului, MEM, necesar
implementării acestei structuri este dat de relaţia

MEM = max(valoare cheie căutare) * dimensiune(element) (29.30)

iar în cazul în care valoarea maximă este foarte mare atunci
trebuie să fie rezervat un spaţiu considerabil;

- gradului de utilizare a spaţiului; deoarece dimensiunea structurii
este dependentă de valoarea maximă a cheii de căutare, nu se
ţine cont de numărul real de elemente utilizate; cea mai
nefavorabilă situaţie este dată de un raport foarte mic dintre
numărul de elemente şi valoarea maximă a cheii; de exemplu, se
consideră o aplicaţie informatică ce gestionează studenţii din
cadrul unei facultăţi reprezentaţi de structura:

struct Student
{
 char nume[20];
 int varsta;
 char facultate[20];
 int nrMatricol;
}

pentru a minimiza timpul de regăsire, se implementează o
structură cu acces direct în care numărul matricol al studentului
este egal cu poziţia în cadrul colecţiei a respectivului element; în
cazul în care valoarea maximă a câmpului nrMatricol este egală
55630, iar numărul real de studenţi este egal cu 1450 rezultă un
spaţiu ocupat egal cu

MEM=max(nrMatricol)*dimensiune(Student)=2,54 MB (29.31)

iar gradul de utilizare a acestui spaţiu este egal cu:

GUM =
MEM

MEM elemente *100 =
48*55630

48*1450
*100 = 2,6% (29.32)

- tipului cheii de căutare; acesta trebuie să aibă un tip numeric

întreg deoarece trebuie să corespundă indexului cu care se
accesează elementele unui vector.

Pentru a remedia dezavantajele utilizării structurilor cu acces direct
sunt definite tabelele de dispersie, hash tables, ce reprezintă colecţii de date
în care pe baza unei funcţii hash cheia de căutare este pusă în
corespondenţă cu poziţia elementului în cadrul colecţiei. Avantajul acestei
tip de structură de stocare şi căutare este dat de:

- utilizarea mai eficientă a spaţiului fără a se stoca memorie pentru
elemente care nu sunt utilizate;

- implementarea de chei alfanumerice; prin utilizarea unei funcţii
care să prelucreze cheia de căutare este depăşită bariera care
limita pentru structurile cu acces direct tipul cheii de căutare la o

valoarea numerică întreagă; în această situaţie rolul funcţiei hash
este de a translata valoarea alfanumerică într-o valoare întreagă
pozitivă.

Dezavantajul tabelelor de dispersie în cadrul proceselor de căutare
este descris de:

- efortul suplimentar de prelucrare dat de funcţia hash care poate
avea în unele situaţii un nivel de complexitate ridicat;

- apariţia în cadrul tabelei a coliziunilor; acestea sunt generate de
situaţia în care două valori Xh şi YH ce aparţin domeniului de
definiţie a funcţie hash conduc la obţinerea de valori identice,
hash(Xh) = hash(Yh); evitarea coliziunilor implică realizarea de
operaţii suplimentare prin care să se identifice poziţia elementului
în cadrul mulţimii.

Din aceste puncte de vedere, tabela de dispersie utilizată în procesul
de regăsire a informaţiei se descrie ca o structură în care datele sunt
stocate în tabele cu adresare directă, iar poziţia acestora este determinată
prin prelucrarea cheii de căutare cu o funcţie hash, figura 29.7.

Elem1 … Elemn/2-1 Elemn/2 Elemn/2+1 … Elemn

EVITARE COLIZIUNI

Cheie de căutare

Tabelă cu acces direct

Valoarealfanumerică Valoarenumerică

Valoare[Elem1, Elemn]

Funcţie hash

Figura 29.7 Căutarea în tabela de dispersie

Funcţiile de evitare a coliziunilor, descrise în cadrul capitolului dedicat
tabelelor de dispersie, definesc metode de regăsire a elementelor ce sunt
descrise de chei cu valori diferite dar care conduc la valori hash identice
ceea ce implică poziţii identice în cadrul structurii.

Analiza comparată a metodelor de căutare în vederea alegerii
metodei care să dea cele mai bune rezultate se bazează pe:

- măsurarea timpului de execuţie; metoda optimă este
caracterizată de cea mai mică valoare înregistrată;

- măsurarea efortului procesor prin prisma numărului de cicluri
maşină realizate pentru a prelucra secvenţa de cod asociată
metodei; codul care va genera cel mai mic nivel de cicluri maşină
evidenţiază algoritmul care se va executa cel mai repede pentru
datele de test şi care este cel mai eficient din punctul de vedere al
sistemului;

- măsurarea zonei de memorie utilizată; algoritmul care va necesita
cel mai mic nivel de memorie internă pentru a prelucra datele
este considerat cel mai eficient din punct de vedere a spaţiului.

- analiza complexităţii algoritmului din punctul de vedere a
calculelor efectuate şi alegerea modelului care este cel mai
eficient.

Primele trei tehnici presupun realizarea unui program care să
implementeze metodele de căutare analizate şi generarea unei proceduri de
testare cu înregistrarea directă a valorilor indicatorilor. Ultima abordare ia în
considerare o analiză a modelului asociat algoritmului de căutare înainte ca
acesta să fie implementat.

Această tehnică se aplică în faza de analiză a problemei de rezolvat şi
din acest motiv face abstracţie de mediul de implementare neluând în
calcul:

- platforma hardware şi software pe care va rula programul;
- memoria disponibilă;
- limbajul de programare utilizat;
- tipul şi relaţiile dintre datele de test.
Indicatorii utilizaţi pentru a determina complexitatea algoritmului au

caracter abstract şi descriu metoda prin prisma structurii interne, a numărul
de instrucţiuni de comparare şi a numărului de iteraţii.

Din punct de vedere matematic, fiecare algoritm de căutare are
asociat un model bazat pe o funcţie f(n) care descrie modul în care acesta
este aplicat. De exemplu, în cazul căutării secvenţiale într-un vector
vector,cu n elemente, modelul asociat are forma:

fcautaresecv(n)=

dacă vector[0] = XVal, element gasit

dacă vector[1] = XVal, element gasit

………………...

dacă vector[n-1] = XVal, element gasit

altfel, element inexistent

Figura 29.8 Model asociat căutării secvenţiale

Dacă se consideră că principala operaţie pe care e bazează metoda de
căutare secvenţială este compararea elementului curent din vector cu
valoarea căutată, atunci complexitatea algoritmului este egală cu n, fiind
notată O(n).

În seturi reale de date de test, elementul poate fi găsit după o
singură operaţie de căutare, după n/2 verificări sau acesta se poate găsi pe
ultima poziţie din vector. Din acest motiv şi pentru a normaliza valorile
înregistrate pentru complexitatea algoritmilor analizaţi se iau în calcul cazuri
generale de execuţie:

- cel mai bun caz descrie situaţia în care este necesar minimul de
efort procesor pentru a regăsi valoarea; în practică are
probabilitatea cea mai mică de apariţie; în cazul căutării
secvenţiale a unei valori într-o listă simplu înlănţuită, cel mai bun
caz este dat de găsirea elementului căutat pe prima poziţie;

- cazul mediu descrie o analiză a unui set de operaţii de căutare pe
baza căruia se determină un efort mediu necesar pentru a regăsi
un element; în cazul algoritmilor complecşi este dificil de
determinat acest nivel mediu;

- cel mai ineficient caz reprezintă situaţia în care este necesar cel
mai ridicat nivel de efort pentru a căuta o valoare; pentru o
analiză obiectivă a algoritmilor de căutare se utilizează acest
criteriu în vederea alegerii rutinei mai eficiente; în cazul căutării
secvenţiale a unei valori într-o listă simplu înlănţuită, cel mai
ineficient caz este dat de găsirea elementului căutat pe ultima
poziţie.

Pe baza modelului asociat algoritmului de prelucrare se determină
nivelul de complexitate al acestuia. Chiar daca funcţia matematică pe baza
căreia este definit modelul conţine numeroşi factori, pentru a determina
gradul de complexitate se ia în considere dominantul relaţiei.

Din punct de vedere matematic, [Rile87], o funcţie, f(x), domină o
altă funcţie, g(x), dacă există o valoare constantă const astfel încât pentru
orice valoare x este adevărată relaţia

const*f(x) > g(x) (29.33)

În domeniul informatic, pentru a determina nivelul de complexitate al
unui algoritm se utilizează o altă versiune a relaţiei anterioare, numită
dominare asimptotica. Conform acestei teoreme, o funcţie f(x) domină
asimptotic o altă funcţie g(x) dacă f(x) domină pe g(x) pentru toate valorile
mari ale lui x.

Dacă se consideră funcţiile

f(x) = 2*x3 + 1 (29.34)

g(x) = 5*x2 + 3*x + 10 (29.35)

se observă din graficul 29.9 că pe intervalul [1;100] ambele funcţii cresc
constant, însă de la valoarea 31 funcţia f(x) prezintă o creştere mult mai
rapidă decât g(x).

0
50000

100000
150000
200000
250000
300000
350000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Valoare X

F(x)
G(x)

Figura 29.9 Exemplu funcţii dominante

În [Wiki07b] se prezintă principalele caracteristici şi reguli de
determinare a nivelului complexităţii, indicator denumit big-O.

Principalele niveluri de complexitate regăsite la structurile de
prelucrare a datelor, căutare sau sortare, sunt bazate pe funcţii:

- constante, de tipul f(n) = 1;
- liniare, de tipul f(n) = n;
- logaritmice, de tipul f(n) = log2n;
- pătratice, de tipul f(n) = n2;
- cubice, de tipul f(n) = n3
- polinomial, de tipul f(n) = nc, cu c >1;
- exponenţiale, de tipul f(n) = 2n sau f(n) = an, cu a > 1.
- factoriale, de tipul f(n) = n!
Tabelul 29.6 descrie comparativ influenţa pe care o au diferitele

grade de complexitate asupra efortului de prelucrare

Tabelul nr. 29.6 Analiză comparată a nivelurilor de complexitate

Valoare n f(n) = 1 f(n) = n f(n)= log2n f(n) = n2 f(n) = 2n
10 1 10 3.32 100 1024
100 1 100 6.64 10000 1,26 * 1030

1000 1 1000 9.97 1000000 -
10000 1 10000 13.29 100000000 -

Pentru a analiza complexitatea structurilor de căutare descrise se ia

în considerare cazul cel mai puţin favorabil.
Tabelul 29.7 descrie complexitatea algoritmilor de căutare analizaţi.

Tabelul nr. 29.7 Complexitatea metodelor de căutare,

cazul cel mai nefavorabil

 Complexitate
metode de căutare în memoria internă
Căutare cu acces direct O(1)
Căutare secvenţială O(n)
Căutare binară O(log2n)
Căutarea în tabele de dispersie O(GUhash)
Căutare în arbori binari de căutare
echilibraţi

O(log2n)

Căutare în arbori B 1+logN((n+1)/2), unde N este ordinul
arborelui

metode de căutare în memoria externă
Căutare secvenţială în fişier O(n)
Căutare cu acces direct în fişier O(1)
Căutare în fişier indexate O(log2n) pentru index implementat pe

arbori binari de căutare echilibraţi
Căutare în fişier inverse O(n)

unde GUhash descrie gradul de utilizare a tabelei de dispersie.

Se observă că din punctul de vedere al complexităţii utilizarea
metodelor de căutare în vector şi în fişier secvenţial conduce la acelaşi nivel

de eficienţă. În cazul implementării celor două metode, se observă că citirea
unui element dintr-un vector este mult mai rapidă decât citirea unui
element din fişier. De exemplu secvenţa

 for(i = 0; i < arrayLength; i++){
 if(array[i] == searchvalue)
 printf("\n SEARCH VALUE FOUND !");
 }

necesită pentru un vector de 30000 de elemente distincte NCMV = 835
cicluri maşină, fiind de două ori mai eficientă decât secvenţa

 int value;
 FILE *pFile = fopen("SearchTest.dat","rb");
 while(!feof(pFile))
 {
 fread(&value,sizeof(int),1, pFile);
 if(searchvalue == value)
 {
 printf("\n FILE SEARCH VALUE FOUND !");
 return;
 }

 }

care necesită pentru acelaşi set de date NCMF = 17317 cicluri maşină.

Programatorul trebuie să acorde atenţie acestui aspect şi trebui să-şi
fundamenteze decizia de a implementa o structură de căutare în defavoarea
alteia pe imposibilitatea de a stoca volumul mare de date în memoria
internă sau pe obiectivul de a maximiza viteza de prelucrare a unui set
redus de date.

Dacă este considerată a colectivitate C formată din elementele c1, c2,
…, cn şi identificate prin cuvinte cu valoare de cheie de regăsire având grade
de utilizare diferite, algoritmii de regăsire performanţi revin la a:

- determina durata operaţiei de regăsire stabilă; această
caracteristică a procesului de regăsire este măsurată în funcţie de
valoarea dispersiei statistice; aceasta este calculată pentru şirul
valorilor înregistrate la testarea performanţei algoritmului; gradul
de stabilitate a operaţiei tinde către un nivel optim pe măsură ce
valoarea dispersiei se apropie de nivelul zero; o altă abordare
este dată de considerarea a două loturi de procese de regăsire;
cele două serii de valori sunt analizate prin prisma mediilor m1 şi
m2, în condiţiile în care acestea nu diferă semnificativ; (se iau 2
utilizatori şi se înregistrează tranzacţiile) procesul se extinde la k
utilizatori ai algoritmului de regăsire;

- numărul de situaţii ambigue este controlat; numărul situaţiilor în
care se produceau ambiguităţi e redus;

- există o situaţie în care se determină un volum maxim prelucrări
şi o situaţie în care se determină un volum minim de prelucrări.

În cazul algoritmilor secvenţiali pentru cheia primului articol este
nevoie de o comparare, pentru a doua cheie sunt necesare două comparări,
iar pentru ultimul articol n comparări. Numărul total de comparări necesar
regăsirii tuturor elementelor este

NTC =
2

)1(* nn
 (29.36)

Pentru cele n articole, numărul mediu de comparări este:

NMC =
2

1


n

n

NTC
 (29.37)

Dacă este dată o structură arborescentă de căutare:

C1

C2 C3

C4 C5 C6 C7

Figura 29.10 Structura arborescentă de căutare

Pentru regăsirea elementelor sunt necesare numărul de căutări:

C1 – 1 comparare
C2 – 2 comparări
C3 – 2 comparări
C4 – 3 comparări
C5 – 3 comparări
C6 – 3 comparări
C7 – 3 comparări

În această situaţie, numărul total de comparări necesar identificării
fiecărui element din arbore este

NTC = 1*1 + 2*2 + 3*4 = (29.38) 



m

k

kk
1

12*

unde k reprezintă numărul de niveluri din arbore. Numărul mediu de
comparări efectuate pentru oricare element este

NMC =
12

2*

1
1

1





nv

nv

k

kk
 (29.39)

unde nv reprezintă numărul de niveluri din arbore şi se consideră că 12 1 nv
reprezintă numărul de noduri dintr-o structură arborescentă binară
completă.

În ipoteza că arborele este complet echilibrat, atunci acesta conţine
pe fiecare dintre cele i = 1,2, …, nv niveluri câte 2nv noduri.

A optimiza o astfel de structură, înseamnă a găsi momentul de
reechilibrare a arborelui. Fie Vi volumul de prelucrări necesar echilibrării i a

arborelui în care au fost adăugate noduri, prin adăugarea de frunze cu chei
mai mari.

De exemplu, se consideră şirul valorilor 10, 15, 21, 43 şi 67 ce
formează arborele binar de căutare echilibrat din figura 29.11.

21

15 43

10 67

Figura 29.11 Arbore binar de căutare

Dacă se adaugă cheile 75, 101, 119, 400 se obţine arborele de
căutare:

21

15 43

10
67

75

101

119

400

Figura 29.12 Arbore binar de căutare dezechilibrat

Volumul total de comparări pe arborele neechilibrat, din figura 29.12
este VCA1 = 33. De la reorganizarea i a arborelui se trece la reorganizarea
i+1 dacă şi numai dacă

VCAk1 + VCAk2 + … + VCAKl > Vkl (29.40)

Dacă se consideră operaţia de reechilibrare a arborelui bazată pe o
parcurgere în inordine şi o reconstrucţie a arborelui prin metoda divide et
impera pentru a insera la fiecare iteraţie elementul din mijlocul intervalului,
atunci se obţine arborele echilibrat din figura 29.13.

67

21
119

15

10 75

43 101 400

Figura 29.13 Arbore binar de căutare reechilibrat

Luând în considerare că operaţia de inserare a unui nod nou este
echivalentă cu căutarea elementului respectiv, volumul de prelucrări al
reechilibrării arborelui ca număr de comparaţii efectuate este VRA = 25. De
asemenea, această valoare este egală cu volumul total de comparări pe
arborele echilibrat obţinut, VCA2 = 25. Se observă, minimizarea volumul
total obţinut prin rearanjarea structurii, VCA2 < VCA1.

Atunci când este îndeplinită restricţia, Kl reprezintă momentul care
precede echilibrarea arborescenţei, optimizând procesul de regăsire a
informaţiei. Această abordare a optimizării regăsirii în structuri arborescente
urmăreşte nu numai reducerea efortului de căutare, ci şi operaţiile de
gestiune a arborelui, inserarea, respectiv, ştergere de valori. Obiectivul este
de a reechilibra atunci când eficienţa căutării este afectată şi nu după
fiecare operaţie de adăugare sau ştergere noduri.

Căutarea informaţiei sortate reprezintă un mod de optimizare. Se
consideră şirul valorilor sortate crescător

10, 20, 25, 40, …., 200 (29.41)

Dacă informaţia nu e sortată este dificil de stabilit un mod de oprire a
căutării dacă s-a depăşit o valoare.

În exemplul dat, dacă se caută elementul cu cheia 43 şi s-a trecut de
cheia 50 din fişier, se conchide că articolul cu cheia 43 nu există.

Căutarea din mai multe direcţii oferă o soluţie alternativă pentru
optimizarea timpului de regăsire. În ciuda faptului că soluţia implică o
creşterea a nivelului de memorie ocupat, obiectivul minimizării timpului de
prelucrare a datelor are prioritate din acest punct de vedere. Soluţii practice
care implementează această abordare definesc mai multe repere în cadrul
colectivităţii ţintă.

Există numeroase aplicaţii software ce utilizează articole cu cheie
alfabetică. În funcţie de poziţionarea relativă a valorii cheii faţă de începutul
setului sau de sfârşitul acestuia, căutarea are loc în direcţii diferite.

Dacă sunt chei care încep cu caracterul ’a’ , atunci căutarea are loc de
la stânga la dreapta. Dacă sunt articole căutate după cheia j ce are valori
apropiate caracterului ’z’ atunci căutarea se realizează de la sfârşitul seriei
de valori.

Este necesar ca toate produsele software să fie înzestrate cu
componente care înregistrează informaţii referitoare la modul în care s-au
efectuat prelucrările.

De exemplu, se consideră programul P care lucrează cu un fişier în
care se accesează articole după valori cheie, ce sunt sortate crescător.

Accesul la datele aplicaţiei se realizează de la stânga spre dreapta,
având ca punct de start începutul fişierului.

Programul contorizează numărul de citiri din fişier şi numărul de
comparări necesar identificării articolului căutat. Acesta va gestiona
informaţiile prin realizarea unei structuri asemenea celei descrise în tabelul
29.8.

Tabelul nr. 29.8 Analiza procesului de căutare şi citire din fişier

Valoare cheie Număr comparări Număr citiri
k1 α1 cit1
k2 α2 cit2
… … …
ki αi citi
… … …
kn αn citn

În urma analizei datelor din tabel, rezultă  numărul mediu de

comparări şi o dispersie ce descrie omogenitatea înregistrărilor. Dacă
există T valori vor exista

2
1 , 2 , …, T şi , , …, indicatori. 2

1
2
2 2

T
Prin teste statistice se verifică egalitatea mediilor şi egalitatea

dispersiei. În ipoteza de egalitate, procesul este stabil şi face obiectul
procesului de optimizare. Se împarte fişierul în două zone de căutare, de la
articolul art1 la articolul







2

nart şi de la acest punct până la artn. În această

situaţie, dacă valoarea căutată are o valoare mai mică decât A =






2

nart ,

căutarea are loc în prima jumătate. Dacă valoarea cheii este mai mare ca A
=







2

nart , atunci căutarea este aplicată în a doua jumătate.

Pentru aceleaşi set de chei de căutare, k1, k2, …, kn se repetă
procesul, rezultând şirul numărului de căutări efectuate β1, β2, …, βn. Pentru
alte R loturi se obţin indicatorii 1 , 2 , …, R şi , , …, . 2

1
2
2 2

R
Dacă mediile şi dispersiile sunt egale revine că procesul este stabil.
Se compară mediile şi dispersiile rezultate în urma celor două teste

pentru a identifica care dintre cele două procedee este mai bun.
Odată selectată abordarea care conduce la cele mai bune rezultate,

se împarte fişierul în trei şi procedeul continuă.
Se va găsi nivelul optim de împărţire a fişierului pentru ca numărul de

comparări să fie, statistic, cel mai mic.
Căutarea este un proces ce implică mai mult decât operaţia de

comparare. Când aceasta este precedată de citire, este important ca
numărul de citiri sa fie cât mai redus.

Regăsirea informaţiei presupune asocierea unor chei textului. Se
consideră o mulţime de fişiere F1, F2, …, Fn şi se pune problema la căutare:

- găsirea fişierului Fi;
- găsirea în fişierul Fi a anumitor informaţii.
Se ia fiecare fişier F1, F2, …, Fn şi se construieşte o structură

informaţională privind conţinutul acestuia, în care sunt reţinute:

C1 – termeni generali;
C2 – termeni specifici;
C3 – grad de cuprindere mare;
C4 – grad de cuprindere redus, particular conţinutului şi domeniului de
apartenenţă.

Pentru fiecare fişier se construieşte vocabularul şi se iau termenii de
bază după frecvenţe. Se asociază coeficienţii de complexitate (C1 F1), (C2
F2), …, (Ci Fi). Fişierele sunt împărţite în patru categorii de complexitate C1,
C2, C3 şi C4. Se studiază elementele de vocabular şi se identifică tipul de
complexitate pentru fiecare. Se ierarhizează cuvintele şi vor rezultat la
motorul de căutare că pentru cuvântul cvi sunt informaţii în fişiere de
complexitate cuprinse între [αi, βi). Din mulţimea de fişiere se extrag numai
acelea care au această complexitate după care se merge pe vocabular şi se
iau fişierele unde cvi au frecvenţa cea mai mare de apariţie.

Toate acestea presupun analiza comportamentului statistic pentru
entităţi text, [Ivap05].

29.4 Mecanisme flexibile de regăsire

Spre deosebire de aplicaţiile clasice, aplicaţiile distribuite care se

adresează unui număr foarte mare de clienţi trebuie să fie caracterizate prin
nivel de flexibilitate foarte ridicat.

În primul rând flexibilitatea se manifestă prin diversitatea modurilor
de introducere a datelor. Datele se introduc de la tastatură, prin coduri
bară, prin scanare sau de pe un suport extern. Sunt aplicaţii care preiau
comenzi vocale.

În al doilea rând flexibilitatea se manifestă prin structura datelor de
intrare. Sunt acceptate atât date complete, cât mai ales date incomplete,
care permit totuşi identificarea corectă a elementului căutat.

Expresiile care combină atribute se construiesc astfel încât să fie
accesat din aproape în aproape acel conglomerat informaţional care
corespunde evenimentului, tranzacţiei produsului sau serviciului de care
este interesat clientul.

Pentru a afla nota obţinută la examen, studentul foloseşte adresa de
Internet a universităţii la care acesta studiază. Primul meniu va fi:

Student

Profesor

TESA

Studentul va alege opţiunea STUDENT.
Meniul care se activează este referitor la facultate:

 Facultăţi:
 Matematică
 Chimie
 Management
 Electronică
Anul: 1 2 3 4 5

Studentul selectează MATEMATICĂ şi cifra 4.
Meniul următor se referă la disciplinele din anul şi facultatea

selectată:

 Disciplina
Geometrie
Analiză
Ecuaţii diferenţiale
Algebra
Astronomie

Este selectată opţiunea ALGEBRĂ
Meniul următor vizează introducerea numelui, prenumelui parolei

 Nume:

Prenume:

Parolă:

În cazul în care datele introduse sunt corecte, se afişează meniul:

 Studentul - - - - - - -
A obţinut la examenul de la
disciplina

- - - - - - - - - - - --- - - -
nota: - - - - - - - -- - - --

corectare ieşire

Selectarea opţiunii continuare permite apariţia meniului disciplinelor

şi pot fi selectate 1, un grup sau toate şi vor fi afişate note.
Se observă că accesarea presupune selecţie. Datele de intrare sunt

numele prenumele şi parola care trebuie ortografiate strict după reguli
convenite la înscrierea în facultate privind literele mari, literele mici şi
diacriticele.

În cazul achiziţionării unui produs, clientul accesează un magazin
virtual. Meniul de legătură este:

 Magazinul x unde
Produse

 Cash
 În rate

continuare

Clientul alege opţiunea convenabilă. Meniul următor se referă la tipuri

de produse:

 Produs
 frigidere
 telefoane
 maşini de spălat
 autoturisme

Selectează televizoare:

 Diagonala
 40 cm
 50 cm
 60 cm
 80 cm
 100 cm

Selectează 60 cm:

 Existent în stoc
Panasonic 8 500.000
LG 6 300.000
Sony 12 000.000
Siemens 11 000.000

 Rate cash

Se tastează rate:

 Venit net: 4 000.000
Sumă maximă 800.000
Rată:
Afişez număr rate:
Lista valorii nete:
Data plăţii în ziua:
Valori nete +dobândă

Problema căutării este definită printr-o mulţime de elemente a1, a2,

…., an înzestrate cu diferite proprietăţi, a căror dispunere este de asemenea
diferită. Trebuie localizat un element din mulţime în vederea utilizării.
Localizarea este efectuată prin procese de căutare şi identificare elementul
găsit este cel căutat, are loc prelucrarea.

Problema căutării are numeroase aplicaţii şi mai ales dezvoltări
teoretice în domeniul valutar întrucât apar multe necunoscute în privinţa
numărului elementelor a1, a2, …., an, poziţiei şi proprietăţilor acestora.

Asemenea căutării în aplicaţiile valutare, implicaţiile Internet
reprezintă numeroase necunoscute pentru clienţi. Fiecare aplicaţie are
specificul ei.

Modul în care este definită interfaţa are rolul de a determina sistemul
selecţiilor de căutare a revoluţionat întregul sistem al căutării.

Este important ca întregul sistem al căutării să se bucure de
caracteristica de continuitate.

În primul rând se impune studiul interfeţei aplicaţiilor cele mai
frecvent referite.

În al doilea rând, se utilizează caracteristicile de căutare deja
cunoscute.

În al treilea rând se procedează la înzestrarea interfeţei cu
caracteristice de reorientare, care va da din aproape în aproape o
caracteristică apropiată de cerinţele materiale. Se înregistrează ferestrele
de referire a opţiunilor după care se reorganizează structura mesajelor.

În al patrulea rând, se evaluează opţiunile în aşa fel încât situaţia în
care se tastează date se reduc cât mai mult posibil.

În al cincilea rând se are în vedere găsirea tuturor posibilităţilor de
introducere date şi de realizare de operaţii în aşa fel încât să se asigure
completitudinea operaţiilor (mod de plată de prelucrare informaţii).

Căutarea clienţilor necesită algoritmi flexibili şi un nou mod de
abordare.

Se subordonează criteriile de definire chei de selecţie şi mai ales
opţiuni care ţin seama de cerinţele clienţilor şi nu de restricţiile echipelor
care dezvoltă aplicaţiile.

	 29. STRUCTURI FOLOSITE ÎN PROCESE DE CĂUTARE
	29.1 Tipologii de aplicaţii
	29.2 Chei de regăsire
	29.3 Algoritmi de căutare
	29.4 Mecanisme flexibile de regăsire

