29. STRUCTURI FOLOSITE IN PROCESE DE CAUTARE

29.1 Tipologii de aplicatii

Aplicatiile informatice difera functie de obiectivele pentru care au fost

elaborate.

Tipologiile aplicatiilor sunt considerate in raport cu criterii de
clasificare elaborate atat de elaboratori, cat si de dealeri, dar mai ales de
catre clienti.

Dupa criteriul structurii, aplicatiile informatice sunt:

seriale, in care componentele sunt referite una cate una; calitatea

executiei componentei precedente determina referirea
componentei urmatoare in secventa si deci, executia intregului
lant;

arborescenta, caz in care componentele se dispun pe niveluri si
referirea depinde de evaluarea unei expresii relationale; sunt
situatii in care pe o ramura a arborescentei prelucrarile conduc la
rezultate corecte, in schimb pe alte ramuri rezultatele sunt
incerte;

retea, care presupune atat executii in secventa cat si evaluari de
expresii relationale; referirile sunt uneori comune pentru mai
multe componente, atat pentru componente urmatoare, cat si
pentru componente precedente ca pozitie, care devin urmatoare
in executie.

Abordarile moderne impun clasificari spre constituirea de clase, de
module, de interactiuni, ceea ce conduce la constructii simple, medii sau

complexe.

De asemenea, in raport cu evolutiile ulterioare se cauta accentuarea
laturilor de mentenanta sau portabilitate. Aplicatiile informatice sunt sau nu
sunt inzestrate cu anumite proprietati, caz in care sunt incluse intr-una din
categoriile apartindnd criteriilor care se definesc ad-hoc. Din punct de
vedere al utilizatorilor, aplicatiile informatice sunt:

pentru un singur client, de regula specializat in realizarea de
prelucrari complex si este vorba de aplicatii particulare, cu volum
mare de decizii care presupun nivele de agregare ridicate;
aplicatia presupune numeroase conventii referitoare la tipurile de
operatii, procedurile care se activeaza si ramurile care se
traverseaza in reteaua asociatd; exista numeroase puncte de
interventie pentru a actualiza parametrii si chiar proceduri de
calcul si de selectie a datelor din bazele de date pentru a urmari
dinamica sistemului economic din care aplicatia este parte;

cu numar restrans de utilizatori, destinate lucrului cu baze de
date al caror volum de actualizare este ridicat; aplicatiile sunt
specializate iar operatorii sunt profesionisti in domeniu; se
definesc tipologii de operatii carora le corespund coduri de
selectie si date de intrare specifice; se urmareste rezolvarea de
probleme intr-o interval dat de timp, cu controlul riguros asupra
volumului de date; se elaboreaza chei de control pentru
garantarea calitatii datelor de intrare care garanteaza la randul lor
calitatea rezultatelor; aceste aplicatii determina plati, acceptarea
unor stari de fapt, selectia de candidati si alte forme de tranzactii

sau de construire a argumentatiilor; operatorii sunt instruiti atat
in utilizarea produselor software, cat mai ales in semnalarea de
erori in efectuarea de corectii acolo unde este posibil;

numar de utilizatori foarte mare, de masa, cu grad de
neomogenitate ridicat; interfetele sunt astfel construite incat toti
utilizatorii sa obtina maximum de satisfactie; se impune ca aceste
aplicatii sa fie atent elaborate, sa tind seama de cerintele reale
ale utilizatorilor si sa nu necesite procese de instruire speciale; in
cazul in care numarul de pasi care se parcurg este indicat,
trecerea de la un pas la altul este marcata prin comenzi de acelasi
tip; problema rescrierii la pasul initial (de start) se va realiza de la
oricare din etapele interactiunii; neomogenitatea clientilor impune
utilizarea de interfete grafice; clientul trebuie sa obtina maximum
de beneficii cu minimum de date introduse de la tastatura; se
efectueaza o cercetare sistematica pentru a evidentia care sunt
situatiile destinate care trebuie tratati pentru cazurile cu frecventa
cea mai mare se definesc fluxuri de optiuni care prin tastari
simple sa conduca la traversarea de pasi si obtinerea de efecte in
concordanta cu asteptarile utilizatorilor; clientii efectueaza un
numar limitat de selectii, iar modul de reprezentare a datelor
reduce repetitivitatea de operatii generatda de erori de
interpretare; simplitatea dialogului om-masina, lipsa de rigiditate
si luarea in considerare a tipurilor de clienti cu comportamentul
specific are rolul de a genera aplicatii informatice destinate de
succes, viabile.

29.2 Chei de regasire

Aplicatiile informatice cele mai frecvente sunt caracterizate prin
utilizarea in procesul de regasire a unei singure chei.

De reguld, in procesul de analiza a problemei de rezolvat se parcurg
urmatorii pasi:

se identificda multimile cu care se opereaza precum: multimea
persoanelor, multimea materialelor, multimea documentelor,
multimea operatiilor etc;

se stabilesc numarul maxim de componente care alcatuiesc
multimile;

se alege algoritmul de cautare a cheilor asa fel incat sa se asigure
unicitatea in concordanta cu apartenenta elementelor colectivitatii
la eventuale submultimi;

se genereaza mecanisme de stare si de cdutare care sa reduca
duratele de prelucrare.

In cazul in care dinamica inregistratd de colectivitate permite sa
construim chei numerice.

Pentru salariatii unei intreprinderi, marca salariatului - unica - este
un numar. Salariatul X are marca 7250, ceea ce inseamna ca a fost a 7250
a persoana care s-a angajat. Cei dinaintea sa mai lucreaza, s-au transferat
sau au plecat la pensie.

Aplicatiile bazate pe marca salariatului impun manipularea unei
legitimatii in mod obligatoriu.

In cazul in care se doreste diferentierea muncitorilor pe sectii se face
o codificarea sectiilor si o codificarea a muncitorilor si se concateneaza cele
doua coduri, rezultdnd marca muncitorului. De exemplu, pentru o
intreprindere cu 25 de sectii numerotarea sectiilor se face cu 01, 02, ..., 25,
iar pentru codul muncitorului se constituie secvente formate din patru cifre.

Marca salariatului 140014 arata ca este vorba de salariatul de la
sectia 14, avand codul 0014 in codul sectiei respective. Aplicatiile bazate pe
0 singura cheie sunt proiectate astfel incat sa se poata gestiona cu usurinta
toate datele. Simplitatea acestor aplicatii impune un nivel ridicat de
rigiditate. Generarea codurilor in mod serial corespunzatoare multimilor
omogene face dificil procesul de regasire atunci cand lipseste suportul pe
care este indicat codul elementului ce trebuie cdutat. Elaborarea de structuri
care se asociaza cheilor si a mecanismelor de continuare a elementelor
eliminad partial acest impediment.

Este important ca partile ce formeaza structura sa fie alcatuit din
multimi deja existente, cunoscute, iar numarul de elemente generate sa fie
cat mai restrans.

Daca o firma comercializeaza produse electrocasnice, autoturisme si
materiale de constructii catre persoane fizice codul contractului este o
constructie rezultata din concatenarea secventelor de numere urmatoare:

- secventa corespunzatoare tipului de produs achizitionat;

- secventa de identificare a cumparatorului.

Se stabileste un algoritm de constructie a codului contractului.
Fiecare litera din alfabet are o pozitie: litera a are pozitia 01, litera b are
pozitia 02, litera i are pozitia 09, litera r are pozitia 17 etc.

Lunile anului se numeroteaza 01 (ianuarie) sau 07 (iulie) si 12
(decembrie). Zilele lunii se numeroteaza de la 01 la 31. Anul de nastere se
numeroteaza cu patru cifre pentru a elimina ambiguitatile de tipul celei
generate de trecerea la anul 2000.

Daca sunt luate in considerare si parti din numele persoanei fizice
care achizitioneaza produse, cu certitudine este asigurata unicitatea codului
contractului.

Daca structura codului de control este descrisa prin:

- pozitia 1: tipul produsului E - electrocasnice, A — autoturism, C -

material de constructii;

- pozitiile 2, 3, 4, 5: anul nasterii cumparatorului;

- pozitia 6,7: luna nasterii cumparatorului;

- pozitia 8,9: ziua de nastere a cumparatorului;

- pozitiile 10, 11, 12: primele 3 litere din numele cumparatorului la

completare se asigura unicitatea codului contractului ca cheie de

_ regasire.

Intrucat un rol esential in evidente il are codul numeric personal, in
dezvoltarea aplicatiilor moderne va fi inclus in structura cheilor in vederea
regasirii,

In operatiile cu clientii posesivi de posturi telefonice numarul postului
si codul personal deja formeaza un cod redundant.

La proiectarea cheilor de regasire este preferabil sa fie utilizate
secvente care descriu elemente deja existente precum:

- doua litere ce reprezinta prescurtarile numelui de judet;

- litera M, F prin care se indica sexul persoanei;

- data nasterii prezentata prin an, luna, zi;

- alte componente din structura codului personal;

- cuvinte prin care se desemneaza in clar produse (telefon, frigider,

cuier, tabla, cablu, geam);

- denumiri de localitati, strazi, institutii.

Schimbarea conceptiei privind definirea cheilor rezida din trecerea de
la aplicatiile bazate pe informatii simple utilizate in programul de regasire,
oferite complet, dupa reguli specificate, la aplicatii cu clienti diferiti,
neomogeni ca pregatire in raport cu o aplicatie informatica, unde regasirea
trebuie sa se faca daca informatiile pe care clientul le are.

Cheile de regasire sunt numeroase si la proiectarea aplicatiilor se
impune comutarea de arborescenta ale cor frunze sunt de fapt codurile
unice.

In cazul informatiilor incomplete sunt extrase submultimi dintre care
este identificat elementul cautat.

De exemplu, se ia in considerare codul numeric personal, caruia i se
asociaza arborescenta data in figura 29.1.

P (2)
ONONOIoNONG

S
anul

Jim

Secventa

Figura 29.1 Structura arborescenta asociata CNP

Este important ca la un volum cat mai restrédns de date de intrare sa
se obtina o finete de selectie cat mai buna

Pentru efectuarea de studii statistice se ajunge la forma de structura
arborescenta care sa genereze un numar cat mai restrans de elemente.

In cazul persoanelor incorporabile anul nasterii conduce la submultimi
formate din multe elemente.

In schimb ziua de nastere urmata de luna de nastere conduce la o
multime de elemente din care se extrage cu usurinta un element pentru a
efectua prelucrari solicitate.

Problema cheilor de regasire trebuie rezolvatda adecvat pentru a
genera echilibrul aplicatiilor informatice si pentru a reflecta particularitatile

evolutiei fiecarei aplicatii in parte, in raport cu clientii carora este destinata.
Se au In vedere aplicatiile distribuite cu accesul direct al clientilor.

Este important sa se utilizeze pentru regasire chei grafice date sub
forma unor simboluri, liste de cuvinte care corespund numelor de localitati,
denumiri de produse, marci de produse, categorii de produse, valori
numerice, denumiri de evenimente etc.

Este important ca fiecare client sa tasteze cat mai putine informatii
de intrare, iar produsul software sa aiba o serie de algoritmi de normalizare
care sa conducd la realizarea acelui nivel de flexibilitate cerut aplicatiilor
distribuite care se adreseaza publicului larg.

Astfel, daca se doreste un numar de telefon al unei persoane vor fi
solicitate urmatoarele date:

Numele: x x x..x

Prenumele: x x x ...x

Orasul: lista de orase

Localitatea in ordine alfabetica sau posibilitatea de a tasta alta localitate
Strada: x.....x

Bloc: xxx

Apartament: xxx

Numar: xxxx

Atunci cand aplicatia este destinata utilizatorilor specializati sau care
au efectuat un stagiu de instruire, introducerea datelor este clara, intrucat
meniul este suficient de riguros.

In cazul utilizatorilor cu grad de instruire, cu cunostinte incomplete
asupra modului de formulare a cererii apar urmatoarele situatii:

- numele este ortografiat astfel decat forma stocata in baze de

date; de exemplu Brancusi din baza de date poate fi tastat
BRINCUS sau Brancus sau Brancusi sau Brancus;

- numelui ii lipseste o vocald sau o consoana dubla; de exemplu,
cuvantul BELLER este ortografiat Beler sau Belar, Johnson este
ortografiat Jonson

- numele este interschimbat cu prenumele; Balcescu Nicolae este
ortografiat Nicolae Balcescu

- prenumele este inlocuit cu o litera sau grup de litere; Nicolae e
scris N Gheorghe e scris Gh. sau este inlocuit cu un formular sau
diminutiv. Ion este inlocuit cu Nelu, Dan este inlocuit cu Daniel,
Gheorghe este inlocuit cu Gica sau Gicu sau Gigel. Aceleasi
probleme sunt puse si in cazul ortografiei cu litere mari. In cazul
in care numele si prenumele este introdus intr-o singura rubrica
cea a numelui se impune o operatie opusa concatenarii.

Se considera colectivitatea A = {a;, a, ..., a,} pentru care un element

a; este descris prin sablonul Sc definit de caracteristicile sc;, sc, ..., scn in
multimea Sc = {sc;, sC, ..., SCmy. Pentru elementul a; se genereaza sirul de
caractere ¢;; pentru a specifica sirul caracteristicii Sc; din sablon.

Descrierea este completa atunci cand pentru toate elementele
colectivitatii A au fost masurate sau generate siruri de caractere pentru
toate caracteristicile ce definesc sablonul. O astfel de definire este data in
tabelul 29.1.

Tabelulul nr. 29.1 Masurarea elementelor colectivitatii materialelor

Denumire Cod U.M. Stoc Intrari Iesiri Pret
initial unitar

Var 100 kg 100 10 50 5
Ciment 122 kg 500 30 200 100
Caramida | 400 buc. 10000 1000 5000 1
Cuie 310 kg. 100 50 25 25
Rigips 133 buc. 200 20 50 60

Sunt situatii in care nu sunt efectuate definiri complete sau

masuratori datoritda neluarii in considerare a caracteristicilor sau datorita
costurilor foarte ridicate de a masura, asa cum se prezinta in tabelul 12.2.

Tabelul nr. 29.2 Inregistrdri incomplete pentru colectivitatea elevilor

Nume Sex Data Indltime Scoald

nasterii (cm)

Popescu Ion M 10.08.1985 173 174

Alexandrescu M 180 174

Gheorghe Ion M 11.05.1984 3

Pana Marius 14.03.1984 165

Popescu Alina F 10.07.1985 167 3

Jderu Ioana F 22.05.1984 165

Pentru fiecare dintre elementele multimii A se stabilesc siruri de
caractere care se constituie in vocabularul asociat colectivitatii A.
Se iau in considerare frecventele de aparitie ale cuvintelor.
Pentru o colectivitate B definita in tabelul se masoara frecventele de aparitie
a cuvintelor in vocabular.

Tabelul nr. 29.3 Nivelurile generate pentru caracteristicile C;, C5, C3 si Cy4
care definesc colectivitatea B

Vocabularul

tabelul 29.4

c1 c2 C3 C4
aa X u WWWW
bbb Yy u zzz
cC X VVV zzz
dddd X VVV zzz
e yy u zzz
ffff X u zzz
g yy u WWWW
h vy VVV 227
iii Yy VVV 22z
ji 1A% VVV zzz

asociat colectivitatii A, V, este definit de sirurile de
caractere V, = {aa bbb cc dddd e ffff g h iii jj x yy u vvwv wwww zzz}.
Frecventele de aparitie a cuvintelor sunt date pentru caracteristici in

Tabelul nr. 29.4 Frecventele pentru caracteristicile C;, C,, C3 si C4 care
definesc colectivitatea B

-
[
-—py
N
)
w
-
E

OO0 |0|0|0O|0O|0O|O|O|OO|0O|0|0|O0|0O

Cuvant
aa
bbb
cc
dddd
e
i
g
h
iii
ji
X
YY
u
VVV
WWWW
777
TOTAL:

ellolle]llelle]llelle]llelle]llolle]llolle]lle}llelalle]
OO0 |0|0|0O|0O|0O|O|O|O|O|0O|0|0|0|O
ellolle]llelle]llolle]llelle]llolle]llolle]lle}llellalle]

[y
o
-
o
[EY
o
-
o

Analizand frecventele rezulta ca subvocabularul VC; este format din
cuvinte ce constituie chei unice in timp ce vocabularele VC,, VCs si VC4 au
un sir de cuvinte mult mai restréns si un sir se atribuie mai multor elemente
din colectivitatea B.

Compararea sirurilor de caractere este o operatie uzualda care
evidentiaza masura in care sirurile difera sau nu unele de celelalte.

Daca se considera multimea sirurilor de caractere S = {C;, Cy, ..,

Cnsir)
Se calculeaza indicatorul de asemanare AS dupa relatia:
K
AS = 28 (29.1)
nsir
unde:
e KS - numarul de siruri identice;
e C? - numarul combinatiilor din multimea S de siruri luate cate doua.

nsir
in multimea So = {aa, bb, cc, dd} perechile care se construiesc sunt
in numar de C; = 6. Acestea sunt:

(aa, bb), (aa, cc), (aa, dd), (bb, cc), (bb, dd) si (cc, dd) (29.2)
Aceste perechi de siruri sunt date diferite, rezultdnd KS = 0 si
indicatorul ASsq) = O.
In cazul multimii de siruri:

S; = {aa, bb, cc, aa} (29.3)

rezultd perechile:

(aa, bb), (aa, cc), (aa, aa), (bb, cc), (bb, aa) si (cc, aa) (29.4)

Cum operatia de comparare este comutativa rezulta ca operatiile de
comparare aplicate perechilor de siruri (aa, bb) si (bb,aa) conduc la acelasi
rezultat. O situatie identica se regaseste si in cazul perechilor (aa, cc) si (cc,
aa).

Indicatorul ASs1) este:

3 1
AS(Sl) = g=5 (295)

Se defineste indicatorul:

C2
ASq, = F (29.6)
unde:
e m - numarul de cuvinte diferite din multime;
e n - numarul total de cuvinte;
C; 1
AS) =C—32— = (29.7)
4

Cu cat valoarea indicatorului AS tinde catre 1, cu atat rezultd ca
sirurile datorita asemanarii dintre nu se constituie intr-o multime de chei de
regasire a informatiei. Concatenarea sirurilor este operatia prin care doua
siruri C; si C; se alipesc rezultédnd un nou sir C; = C; || C;.

Daca se considera multimile de siruri S; si S, cu acelasi numar de
componente

S1 =A{Cy, Co ..., Crsirc} (29.8)

S, ={d,, da, ..., dnsic} (29.9)
prin concatenarea elementelor |; = ¢ || d; rezulta multimea:

S3 = {/1/ Iz ..., /nsir} (29-10)

Indicele de asemanare pentru multimile S;, S, si Ss trebuie sa difere
astfel incat:

AS(S;) = AS (S3) si AS(S:) = AS (S3) (29.11)

numai in cazul in care multimile S; si S, sunt identice aceste conditii nu
sunt indeplinite.

Pentru S; ={a, b, ¢, d} si S, = {x, y, z, w} rezulta valorile:
AS(S;) = 0; (29.12)

AS(S.) = 0; (29.13)

iar multimea Ss generata, are valorile
S; = {ax, by, cz, dw}si AS(S3) =0 (29.14)

Se observa ca in ipoteza AS(S;) = 0, AS(S,) = 0 rezulta AS(Ss) = 0.
Pentru S; ={a, b, c, a} si S, = {x, y, z, X} rezulta:

AS(S;) = %; AS(S;) = %; AS(S;3) = %; S; = {ax, by, cz, ax} (29.15)

Pentru S; ={a, b, c,a}si S, =<{x,Y, Yy, w} rezulta:

AS(S:) = —; AS(S2) = —; AS5(S3) = 0; S5 = {ax, by, cy, aw} (29.16)

1 1
2 2
Concatenarea sirurilor corespondente din multimi presupune ca:

- multimile sa aiba acelasi numar de componente;
- operatia sa se efectueze pe elemente de pe aceeasi pozitie din
fiecare multime.
Multimile de siruri se dispun sub forma unor coloane intr-un tabel cu
MS coloane si NSIR linii dacd numarul de multimi de siruri este MS si
numarul de elemente intr-un sir este NSIR, tabelul 29.5.

Tabelul nr.29.5 Agregarea sirurilor

POZitie S1 52 aen Sj ann SMS
E1 X11 X12 ana X1j ans X1iMs
Ez X21 X22 aen X2j aas XoMs
E; Xi1 Xi2 e Xij aen Xims
Ensir XNSIR1 XNSIR2 XNSIRj XNSIRMS
in care:

e £; - pozitia elementului in sir;

e S; - multimea j de siruri;
e X;j — sirul de pe pozitia i din multime S;.

Se calculeaza indicatorii AS(S:), i = 1,2, ..., MS. Daca exista multimile
Siy, Siy, ..., Six pentru care indicatorii AS() = 0 rezultd ca oricare din aceste
chei se folosesc drept cheie unica de regasire a informatiei.

Se construiesc cele C;. multimi S; = S; || S; ale cdror elemente

rezulta prin concatenarea de elemente corespondente.
Se calculeaza indicatorii:

AS(S11), AS(Siz2), ..., AS(Si)isjs .. AS(Sms-1ms) (29.17)

Daca exista indicatori cu valorile AS = 0 , acele multimi se utilizeaza
ca chei unice.

Procedeul de concatenare se extinde la trei, patru multimi pana
rezulta multimea cu sirurile cele mai lungi obtinute din concatenarea celor
MS multimi.

MS
Si,2.,ms =[S (29.18)
i=1

De exemplu, se considera multimile:
S;={a, b, c,d} (29.19)
S2=4x, ¥,z x} (29.20)
S;=4{1,2,3, 1} (29.21)
Si23=S:|1 S2 || S3 =1 axl, by2, cz3, ax1} (29.22)
pentru care se determina valorile:

AS(S:) = %; AS(S) = %; AS(S123) = % (29.23)

Rezultd ca operatia de concatenare nu a condus la obtinerea unor
chei unice.

Bordarea este operatia prin care unui tablou i se adauga coloane sau
linii. Bordarea unei coloane cu valori pentru care indicatorul AS are valoarea
0 inseamna adaugarea la tabloul dat a unei coloane de chei unice.

Se obtine in acest fel un nou tablou in care elementele se identifica
fara dificultate prin chei unice.

Atunci cand cheia unica este adresa fizica a articolului sau pozitia pe
care articolul o ocupa in fisier, baza de date sau in depozitul de date,
procesul de regasire a informatiei este accelerat.

Daca cheia unica este invariabila atunci cand rezulta din masuratorile
caracteristicilor, isi pierde acest caracter cand se produce trecerea pe un alt
suport daca cheia este rezultatul bordarii cu o coloana de adrese.

Cand cheia unica indica pozitia elementului prin inserare se produce
schimbarea de pozitie ceea ce impune existenta unui algoritm recalculare a
adresei relative.

29.3 Algoritmi de cautare

Orice tip de aplicatie informatica are componente de prelucrare a
datelor indiferent de tipul sau sursa de provenienta a acestora. Obiectivul
este de a obtine rezultate, de a atinge obiectivul final pentru care a fost
dezvoltata aplicatia, rezolvarea unei probleme bine definite.

Datele prelucrate de aplicatie sunt stocate in colectii conform si sunt
aranjate conform unor metode considerate de programator importante si
eficiente. Prelucrarea acestor date, presupune iteratii in care seturi de una
sau mai multe valori sunt preluate din multime si sunt introduse ca operanzi

in secvente de instructiuni. Pentru aceasta programatorul utilizeaza rutine
de cautare pentru a avea acces la valorile utilizate.

Algoritmii de regdsire au menirea de a identifica in multimea de
valori, articolul a carui cheie este specificata.

In functie de complexitatea operatiei de cautare, exista urmatoarele
tipuri de algoritmi de regasire:

- algoritmi bazati pe operatii de comparare a cheii specificate cu
chei din multimea de articole; procesul se incheie atunci cand
cheia specificata este localizat sau cand a fost epuizata multimea
articolelor; performanta algoritmilor este data de numarul de
comparari;

- algoritmi in care se calculeaza pe baza cheii adresa relativa si
adresa fizica a articolului; performanta este data de numarul de

_ operatii si de densitatea pozitionarii articolelor.

In functie de locatia datelor, operatia de cautare are loc:

- In memoria interna a calculatorului; dimensiunea setului de date
este redusa insa procesul este caracterizat de viteza mare de
executie datorita efortului redus al procesorului de acces la date;
pentru a putea rula rutinele de cautare, la fiecare executie a
aplicatiei trebuie construit setul de date deoarece acesta nu exista
in afara memoriei rezervate aplicatiei;

- in memoria externa, datele fiind stocate in fisiere pe diverse
suporturi de stocare; dimensiunea setului de date este foarte
mare, iar procesul este caracterizat de viteza redusa de
prelucrare datorita efortului procesor ridicat dat de citirea datelor
si aducerea acestora in memoria internd; datele sunt
independente de aplicatie din punctul de vedere al existentei
acestora, nefiind nevoie sa fie recreate de fiecare data cand
aplicatia este lansata in executie;

- In memoria interna si externd; se combina tehnicile de cautare in
memoria interna, aplicate unor structuri auxiliare, cu metodele de
acces la date stocate pe disc.

Legatura de interdependenta dintre procesul de cautare si structurile
de date are la baza necesitatea de a stoca informatia fie in memoria virtuala
sau In cea externa intr-o forma care sa asigure integritatea datelor si care
sa permita ulterior citirea acestora.

Cautarea secventiala este procesul prin care datele sunt regasite prin
parcurgerea lineara a tuturor elementelor din multimea de date pornind de
la inceputul acesteia. Procesul se finalizeaza cu regasirea elementului cautat
sau cu atingerea sfarsitului colectiei de date, lucru care indica terminarea
operatiei de cautare. Figura 29.2 descrie modul in care este aplicata
cautarea secventiala in cadrul unei colectii de date formata din elementele
Elem;, Elem,, ..., Elem, pentru a gasi valoarea XVal.

DA Terminare
cautare

NU

(N ([N (I

Elem,|Elem;| ... |Elem;| ... |[Elem,.;/Elem,

Figura 29.2 Cautarea secventiala a unei valori intr-o colectie

Pentru a implementa intr-un limbaj de programare aceasta metoda se
tine seama ca aceeasi rutina de verificare a valorii cautate se aplica pentru
fiecare element in parte.

int SecventialSearch(int * array, int arraylLength, int searchvalue){

int i;
for(1 = 0; 1 < arrayLength; i++){
if(array[i] == searchvalue)
return 1i;
}
return -1;

In cazul in care structura de date utilizatd pentru a stoca valorile
multimii este de tip lista simplu inlantuita atunci rutina utilizata pentru
cautarea secventiald a unei valori este ListSecventialSearch.

struct SLList
{
int value;
SLList *next;
}:
SLList* ListSecventialSearch(SLList * head, int searchvalue){
SLList *temp;
for(temp = head; temp!=NULL; temp = temp->next){
if(temp->value == searchvalue)
return temp;

return NULL;

Aceastd metoda de cautare este imbunatatita prin reducerea
numarului de comparatii realizate in cadrul ciclului repetitiv, [Knut73],
tehnica specifica optimizarii la nivel de text sursa, [Ivan07a].

int QuickSecventialSearch(int * array, iInt arraylLength,
int searchvalue){

int i;

array[arrayLength] = searchvalue;

for(1 = 0;; i++){

if(array[i] == searchvalue)
if(i==arraylLength)
return -1;
else

return i; }}

Se observa ca aceasta metoda difera prin:

- utilizarea unui element suplimentar pe pozitia arraylLength in
cadrul vectorului pentru a fi utilizat la verificarea conditiei de
terminare a cautarii;

- reducerea la unu a numarului de conditii ce sunt evaluate la
fiecare iteratie a ciclului repetitiv;

- inserarea unei noi conditii de verificare a terminarii cautarii;
procesul se incheie de fiecare data cu gasirea elementului cautat,
insd daca acesta se gaseste pe pozitia arraylLength rezulta ca
elementul nu se regaseste in multime.

Aceasta simpla modificare conduce la reducerea numarului de cicluri
masina necesare realizarii cautarii. In ciuda faptului ca a doua metoda
necesita un element suplimentar in cadrul vectorului, volumul redus de
cicluri masind reprezinta un efect mult mai important al procesului de
optimizare.

Pe baza metodelor de optimizare a textului sursa, [Ivan07a] se
maximizeaza viteza de cdutare prin desfasurarea ciclului repetitiv si
multiplicarea numarului de elemente verificate. De exemplu secventa

int FastSecventialSearch(int * array, int arraylLength,
int searchvalue){

int i;

array[arrayLength] = searchvalue;

for(1 = 0;; 1+=3){

if(array[i] == searchvalue)
if(i==arraylLength)
return -1;
else
return ij;
if(array[i+1] == searchvalue)
if(i==arraylLength)
return -1;
else
return i+1;
if(array[i+1] == searchvalue)
if(i==arraylLength)
return -1;
else
return ij;
if(array[i+2] == searchvalue)
if(i==arraylLength)
return -1;
else

return i1+2;

}

creste la trei numarul de elemente verificate in cadrul fiecarei iteratii.
Deoarece ciclul repetitiv se termina cu regasirea elementului cautat pe o
pozitie 0 < j < arraylLength sau pe pozitia arrayLength nu are loc depasirea
acestuia si nu se genereaza o eroare de citire in afara vectorului.

Pe baza metodei parcurgerii secventiale a unei colectii se defineste
cautarea cu elemente sortate dupa valoarea cheii.

void SortSecventialSearch(int * array, int arraylLength,
int searchvalue){
int i;
for(1 = 0; 1 < arrayLength; i++){
if(array[i] >= searchvalue)
break;
}
if(array[i]==searchvalue)
return i;
else
return -1;

In cazul in care valoarea ciutatd se regdseste in multimea de valori,
aceasta metoda nu imbunatateste nivelul de eficienta al cautarii secventiale,
functia SecventialSearch. Rezultatele, minimizarea efortului prin reducerea
numarului de valori verificate, sunt evidente in cazul in care valoarea
cidutatd nu se afld in multime. In aceastd situatie, ciclul repetitiv este
intrerupt daca se intalneste un element cu valoarea mai mare decat cel
cautat si nu se mai parcurge tot vectorul.

O alta metoda de cautare secventiala se bazeaza pe frecventa de
referire a elementelor. Cu cat frecventa unui element este mai ridicata, cu
atat acestea sunt mai la inceput si astfel numarul de comparari regasirii lor
scade.

De exemplu, se considera sirul cheilor de cautare pentru care se
inregistreaza frecventele

a b c d
1 1 3 ~ (29.24)

Datele sunt aranjate astfel incat, cuvintele sa fie sortate in ordinea

descrescatoare a frecventelor

7d 3¢ la 1b (29.25)

Utilizarea unei astfel de structuri presupune implementarea unui
camp in structura de date utilizata pentru a inregistra numarul de cautari.
De exemplu, se considera problema stocarii studentilor dintr-o facultate
pentru care se implementeaza structura

struct Student
{
char nume[20];
int varsta;
int cod
int frecventa;
3

Metoda utilizata la cautarea unui student dupa codul acestuia este
identica cu rutina SecventialSearch din punctul de vedere al algoritmului
implementat, insa ia in considerare actualizarea campului frecventa pentru
elementele cautate si resortarea multimii.

Eficienta acestei metode in raport cu o cautare secventialda pe o
multime neordonata sau sortata se bazeaza pe faptul ca in practica, fiecarui

element din multime i se asociaza o probabilitate de utilizare in functie
problema ce trebuie rezolvata.

Exista numeroase studii in acest domeniu, [Knut73], insa doua reguli
stabilesc importanta unui set restrans de elemente, cu frecventa ridicata de
utilizare, in cadrul operatiilor de cautare:

- conform legii lui Zipf, [Wiki07a], probabilitate de utilizare a

elementelor dintr-o multime respecta o distributie data de relatia

C p=C, o pne S cucs]
1//32 2/'-'/,DN ’ il

i=1

p; = (29.26)

acesta a observat in ca frecventa celui mai utilizat k cuvant este
invers proportionald cu pozitia sa in tabela de frecvente; astfel cel
mai utilizat cuvant va aparea in texte de aproximativ de doua ori
mai mult decat al doilea cel mai utilizat cuvant; acesta, la randul
sau are de doua ori mai multe aparitii decat al patrulea cuvant din
lista de frecvente; spre deosebire de alte modele de distributie
artificiale, aceasta teorie a fost stabilita pe cale empirica si de
multe ori exista situatii reale in care se respecta;

- legea 80-20, sau principiul Pareto, [Wiki07a], este un model
empiric definit de economistul Vilfredo Pareto pe baza analizei
veniturilor Italiei; acesta a observat ca 80% din veniturile Italiei
provin de la 20% din populatie; principiul a fost extins pe baza de
cercetari si In domeniu optimizarii aplicatiilor informatice prin
faptul ca 80% din resurse sunt utilizate de catre 20% din
componentele aplicatiei; la nivel de viteza de executie, se observa
ca 90% din prelucrarile efectuate de program au loc la nivelul a
doar 10% din codul sursa;

Pentru a evita definirea de campuri suplimentare in interiorul
structurii de date cu scopul de a gestiona frecventa de utilizare, este
definitd o metoda care se bazeaza pe principiul repozitionarii la inceputul
colectiei de date a fiecarui element cautat. Astfel, se obtine acelasi rezultat,
prin pozitionarea elementelor cautate des la inceputul multimii.

Repozitionarea unui element in cadrul unui vector implica recopierea
elementelor, anterioare elementului mutat, pe pozitii urmatoare. Acest lucru
implica un efort suplimentar de prelucrare a datelor. Pentru a fi evitat,
colectia de date este reprezentata printr-o lista simpla inlantuita. In aceasta
situatie, repozitionarea este echivalenta cu initializarea unui set restrans de
pointeri.

Cautarea secventiala cu elemente sortate dupa valoarea cheii este
imbunatatita prin algoritmul de cautare binara, ce presupune inceperea
procesului dintr-un punct mai apropiat de valoarea cautata decat de la
inceput. Primul reper in procesul de cautare este definit de pozitia din mijloc
a sirului de valori sortate. In functie de marimea relativa a valorii cautate
fatd de valoarea mediana, cautarea continua in sirul elementelor aflate la
stanga sau la dreapta acesteia prin repetarea procesului.

DA :
I Terminare
cautare

~ Elemg;q > XVal ﬁ P Elemq < XVal

Elem1| s |E|emn/2_1 Elemnlz Elemn/2+1| ™ |E|emn
- J — _/
YT Y
_ ’))

Intervale de cautare

Figura 29.3 Cautarea binara a unei valori intr-o colectie sortata crescator

Presupunand ca procesul incepe cu un vector de lungime LV = n
atunci pozitia mediana este determinata prin relatia
mediana = (pOZstart + pozfinal)/z (2927)

unde:

e mediana - pozitia mediana;

® DOZstart - pozitia de start a intervalului de cautare; initial aceasta este
egala cu 0;

® POZfinal - pozitia finala a intervalului de cautare; initial aceasta este
egala cu n.

Prin compararea valorii cautate cu valoarea de pe pozitia mediana se

determina:
- momentul gasirii, daca cele doua valori sunt egale;

- continuarea cautarii in intervalul inferior, daca valoarea cautata

este mai mica;

- continuarea cautarii in intervalul superior, daca valoarea cautata

este mai mica;

- incetarea procesului daca valorile nu sunt egale si nu exista alte

intervale de valori.

void BinaraSearch(int * array, int arrayLength, int searchvalue){

int middlevalue;
int start = O;
int end = arraylLength-1;
int middle;
while(start <= end){
middle = (start + end)/2;

middlevalue = array[middle];

if(searchvalue == middlevalue){
printf("'\n SEARCH VALUE FOUND !');
return;

}

else

if(searchvalue < middlevalue)
end = middle -1;

else
start = middle +1;

+ 3

Fata de cdutarea secventiald, cautarea binara reduce cu mult numarul
de comparari, deoarece la fiecare iteratie se elimina din aria de cdutarea
jumétaAte din valorile neverificate.

Intre tipurile de algoritmi de regasire si tipurile de structuri de date
utilizate in programare exista o legatura stransa de interdependenta.
Semnificatia legaturii este evidentiata si de faptul ca au fost definite tipuri
particulare de structuri de date pentru a permite minimizarea efortului de
cautare si regasire a informatiilor. Astfel de exemple, sunt definite de
structurile arborescente de cautare:

- arborii binari in care fiecare nod numit parinte are maxim doua

noduri numite fiu intre care exista relatia

Va/fiu_sténga < Va/parinte < Va/ﬁu_dreapta (2928)

regasirea informatiei in arborii binari de cautare se face prin
parcurgerea structurii si prin verificarea in fiecare nod a egalitatii
dintre valoarea cautata si cheia nodului curent; in cazul in care nu
exista egalitate, se continua procesul pe fiul din stdnga sau pe cel
din dreapta in functie de sensul relatiei dintre valorile comparate

struct BST
{
int info;
BST * right;
BST * left;
}
void BinarySearchTreeSearch(BST * root, int info)
{
iT(! root)
return;
else
{
if(info == root->info)
{
printf('\n SEARCH VALUE FOUND 1');
return;
}
else
if(info > root->info)
BinarySearchTreeSearch(root->right, info);
else
BinarySearchTreeSearch(root->left, info);
}
by

- pentru a creste eficienta operatiei de cautare pe acest tip de
structura, se iau in considerare tipuri particulare de arbori binari,
ce sunt echilibrati, AVL sau Rosu & Negru; structurile echilibrate
contribuie la cresterea eficientei algoritmului de cautare prin
rearanjarea valorilor astfel incat sa fie minimizat efectul situatiei
cel mai putin favorabile; in cazul arborilor binari de cautare,
situatia cel mai putin favorabila este data de obtinerea unei
structuri arborescente cu Tinaltimea egala cu numarul de

elemente, figura 29.4 (a); reechilibrarea acestei structuri, figura
3.4 (b), minimizeaza timpul de cautare deoarece inaltimea
structurii este minimizata si astfel scade numarul maxim de
comparari ce trebuie efectuate pentru a gasi valoarea cautata;

(b)

Figura 29.4 Tipuri de structuri arborescente binare de cautare.

echilibrarea arborilor de cautare nu influenteazd rutina de
cautare, deoarece relatia dintre valoarea nodului parinte si
valorile nodurilor fiu se mentine; diferenta se observa la nivelul
secventelor de cod de inserare, respectiv de stergere a unei
valori, deoarece structura trebuie reechilibratda dupa fiecare
operatie de acest tip;

arborii B sunt structuri arborescente de ordin N echilibrate, in
care un nod poate contine maxim 2*N chei si minimum N chei, cu
exceptia nodului radacina care poate avea mai putin de N chei;
aceasta situatie este intalnita in momentul construirii arborelui B,
atunci cand au fost inserate mai putin de N chei; pentru fiecare
pereche de chei KValue; si KValue;.; cu i = 1..n exista un nod fiu
NFi+1 pentru care:

KValue; < Valori_chei{NF;;} < KValuej; (29.29)

Figura 29.5 descrie modul in care este definit un nod al arborelui B de
ordin N.

Ya_"_"_r_i c_h&\ ___________________________ Nod arbore Bde ordinN

KValue, | KValue, KValue; KValue,«y i
NF;, NF; NF3 NF; | NFi NF2n | NF2enaq |
-t == 7 """"""""""""""""""""""""""""

Valori adrese noduri fiu

Figura 29.5 Structura unui nod al arborelui B

Daca se considera implementarea structurii arborelui B prin

intermediul listelor de chei si de noduri fiu atunci secventa de cod de
cautarea a unei valori este

typedef struct NodArboreB_liste;

struct ListaChei

{

int valCheie;
ListaChei * next;

¥
struct ListaFii

NodArboreB_liste * Fiu;
ListaFii * next;

}:
struct NodArboreB_liste
{
int NrChei;
ListaChei *capListaChei;
NodArboreB_liste *NodParinte;
ListaFii *capListaFii;
}:
struct NodArboreB
{
int chei[MAX _CHEI];
int NrChei;
NodArboreB * NodParinte;
NodArboreB * NodFiu[MAX_CHEI+1];
}:

void cautaValoare(NodArboreB *NodStart,int ValCheie, NodArboreB *&
NodGasit, int &pozCheie)

{
if(NodStart){
int nrCheiNod = NodStart->NrChei;
if((vValCheie<NodStart->chei[0])&&(ValCheie>NodStart-
>chei [nrCheiNod-1]))
if((NodStart->NodFiu[0] == NULL) && (NodStart-
>NodFiu[nrCheiNod])){
Printf(""\n Cheie inexistenta !'");
return;
}
for(int 1=0;i<nrCheiNod;i++)
if(ValCheie==NodStart->chei[i1]){
NodGasit=NodStart;
pozCheie=i;
}
else
if(ValCheie>NodStart->chei[i])
break;
if((ValCheie<NodStart->chei[1]) && (NodStart->NodFiu[i]!=NULL))
cautaValoare(NodStart->NodFiu[i], ValCheie, NodGasit, pozCheie);
if((ValCheie>NodStart->chei[i-1]) && (NodStart-> NodFiu[i]!'=NULL))
cautaValoare(NodStart->NodFiu[i], ValCheie, NodGasit, pozCheie);
}
}:

Pentru a gestiona informatii stocate pe suport extern, limbajele de
programare pun la dispozitia programatorilor functii de lucru cu fisiere. In
functie de tehnicile de stocare si regasire a datelor pe suport extern, sunt
definite:

- fisiere cu acces secvential in care adaugarea de noi inregistrari se
face intotdeauna la sfarsit, neexistand o procedura speciala de
aranjare a datelor; fisierele cu acces secvential sunt
asemanatoare ca modalitate de lucru cu masivele unidimensionale
si din acest motiv cdautarea se realizeaza prin parcurgerea fiecarei
inregistrari pdna cand se gaseste informatia cdutata sau pana
cand se ajunge la sfarsitul fisierului;

struct Student{

int ID;

char Name[10];

int Age;

}

void FILESearch(char * FileName, int SearchValue){
Student value;
FILE *pFile = fopen(FileName,"rb™);
while(feof(pFile)){

fread(&value,sizeof(Student),1, pFile);

if(Searchvalue == value){
printf(C'\n FILE SEARCH VALUE FOUND !");
return;

}

- figierele cu acces direct sunt structuri de date externe, ce se
regasesc pe disc, in care exista o corespondenta directa intre
pozitia in fisier a unui element si valoarea cheii de cautare;
deoarece aceasta legatura se bazeaza pe unicitatea cheii si pe
ipoteza ca numarul de articole din fisier este egal cu valoarea
maxima a cheii de cautare, fiecare inregistrare din fisier se
gaseste in una din starile, valida sau stearsa logica;

- fisierele de tip invers permit cautarea de informatii pe baza de
chei compuse; sunt utilizate in situatiile in care se cauta
submultimi de articole ce corespund unei filtrari multicriteriale;
pentru a minimiza spatiul ocupat de fisierul invers se vor
implementa structuri pe biti ce corespund criteriilor de cautare,
[Smeu04]; se considera problema gestiunii elevilor dintr-un
judet; pentru fiecare se inregistreaza date descrise de structura
elev;

struct elev
{
char sex;
char nationalitate;
char cetatenie;
char mediu;
char nume[20];
char note[10];
int nrmatricol;

Deoarece o parte din cAmpuri au valori fixe:
- campul sex ia valori in multimea {0 - masculin, 1 - feminin};
- campul nationalitate ia valori in multimea {0 - romana, 1 - rom3,
2 - maghiara, 3 - alta};
- campul cetatenie are valorile {0 - roméana, 1 - alta};
- campul mediu are valorile {0 - rural, 1 - urban};
Pentru ca aplicatia trebuie sa permita cautari dupa aceste criterii se
defineste o structura pe biti:

struct elevl

{
unsigned sex:1;
unsigned nationalitate:2;
unsigned cetatenie:1;
unsigned mediu:l;
unsigned :3;

}:

ce defineste elementele fisierului de tip invers utilizat in procesul de
cautare; motivul implementarii unei structuri pe biti este dat de minimizarea
spatiului; setul de date al elevilor este gestionat prin intermediul a doua
fisiere, unul ce contine toate informatiile si unul ce contine valorile
elementelor de tip elevI; legatura dintre cele doua structuri de date externe
este definita de corespondenta ce exista intre elementele de pe pozitii
identice; rolul fisierului invers, ce contine doar valorile criteriilor utilizate la
cautare, este de a permite implementarea unui proces de cautare mult mai
eficient; operatia de cautare multicriterialda se realizeaza prin intermediul
variabilelor de tip masca si fltru; masca este utilizata pentru a testa daca
elementul analizat indeplineste criteriul de selectie prin intermediul operatiei
de sau exclusiv pe biti; filtrul este utilizat pentru a aduce in prim plan doar
acele campuri care compun conditia multicriteriald de selectie; figura 29.6
descrie procesul de selectie a elevilor care au nationalitatea roméana si
provin din mediul urban;

Criteriu:

- nationalitate = 0; - .
- mediu=1. valoare inregistrare

sex nationalitate cetatenie mediu
—— N —— OR) [by[by[bs[b]b[b[b[b]
[t JofJol1fJo[1[1]1

> filtru

sex ndtionalitate cetatenie mediu | 1 | b | b ‘ 1 | b | 1 ‘ 1 | 1 |
e T A
|

[2JJoJoJ 1] tvJ]1]1]21

=]

L > masca

[0]b[b]0]b[0J0[0] ==0daca inregistrarea corespunde criteriului

Figura 29.6 Selectia multicriteriala prin intermediul fisierelor de tip invers

- figierele indexate sunt fisiere secventiale pentru care se
construiesc o structura auxiliara de tip arbore care sa eficientizeze

procesul de cautare; spre deosebire de fisiere secventiale,
cautarea inregistrarii dupa o chei unica se face in totalitate in
structura arborescenta asociata fisierului; deoarece aceasta
structura are forma:

struct IndexFisier

{

int ValoareCheie;
int PozitieFisier;

}:

odata ce este gasita valoarea cautata, este determinata pozitia in
fisier a inregistrarii respective; evitand o serie de citiri secventiale
din fisier prin secventa de instructiuni

int Pozlnregistrare = PozitieFisier — 1;
fseek(Fisier, Pozlnregistrare * sizeof(Inregistrare), SEEK_SET);

este citita inregistrarea cautata;

Cel mai eficient algoritm de cautare este acela in care fiecarei valori
din colectia de elemente i se asociaza o pozitie unica in cadrul multimii.
Astfel, pe baza valorii cautate se determina pozitia acesteia in cadrul
colectiei.

In cadrul vectorilor, aceastd abordare se implementeaza cu usurintd
deoarece asocierea dintre valoarea unei chei numerice intreaga si pozitia
acesteia in vector se realizeaza prin:

- definirea unui vector cu numar de elemente egalda cu valoarea

maxima posibila a cheii de cautare;

- se stabileste o valoare neutilizata in cadrul problemei de rezolvat
pentru a indica daca elementul cu cheia cautata exista; deoarece
vectorul reprezintd o zona de memorie continua, se
implementeaza principiul conform caruia elementele existd sau
sunt sterse logic; pentru o cheie de cautare ce ia valori in
intervalul [0...255], valoarea -1 poate fi utilizata pentru a indica
inexistenta elementului cautat in colectie.

Principalul avantaj al cautarii bazate pe acces direct este dat de
rapiditate cu care se gaseste elementul cautat sau este indicata inexistenta
acestuia.

Pentru structura element functia de regasire este descrisa in secventa
de cod

struct element

int cheie;
int valoare;
};
int DirectAccess(element* array, int arraylLength, int searchvalue)
{
if(searchvalue >= arrayLength) return -1;
else if(array[searchvalue].cheie == -1) return -1;
else return array[searchvalue].valoare;

Cu toate acestea, in practica este evitata aceasta solutie directa care,
desi minimizeaza timpul de regasirea are efecte negative asupra:

memoriei ocupate; dimensiunea spatiului, MEM, necesar
implementarii acestei structuri este dat de relatia

MEM = max(valoare cheie cautare) * dimensiune(element) (29.30)

jiar in cazul in care valoarea maxima este foarte mare atunci
trebuie sa fie rezervat un spatiu considerabil;

gradului de utilizare a spatiului; deoarece dimensiunea structurii
este dependenta de valoarea maxima a cheii de cautare, nu se
tine cont de numarul real de elemente utilizate; cea mai
nefavorabila situatie este datda de un raport foarte mic dintre
numarul de elemente si valoarea maxima a cheii; de exemplu, se
considera o aplicatie informatica ce gestioneaza studentii din
cadrul unei facultati reprezentati de structura:

struct Student

{

char nume[20];

int varsta;

char facultate[20];
int nrMatricol;

pentru a minimiza timpul de regadsire, se implementeaza o
structura cu acces direct in care numarul matricol al studentului
este egal cu pozitia in cadrul colectiei a respectivului element; in
cazul in care valoarea maxima a campului nrMatricol este egala
55630, iar numarul real de studenti este egal cu 1450 rezulta un
spatiu ocupat egal cu

MEM=max(nrMatricol)*dimensiune(Student)=2,54 MB (29.31)

GUM = elemente *100

iar gradul de utilizare a acestui spatiu este egal cu:

MEM _1450%48

*100 = 2,6% (29.32)
MEM 55630 *48

tipului cheii de cdutare; acesta trebuie sa aiba un tip numeric

intreg deoarece trebuie sa corespunda indexului cu care se

acceseaza elementele unui vector.

Pentru a remedia dezavantajele utilizarii structurilor cu acces direct
sunt definite tabelele de dispersie, hash tables, ce reprezinta colectii de date
in care pe baza unei functii hash cheia de cautare este pusa in
corespondenta cu pozitia elementului in cadrul colectiei. Avantajul acestei
tip de structura de stocare si cautare este dat de:

utilizarea mai eficienta a spatiului fara a se stoca memorie pentru
elemente care nu sunt utilizate;

implementarea de chei alfanumerice; prin utilizarea unei functii
care sa prelucreze cheia de cautare este depasita bariera care
limita pentru structurile cu acces direct tipul cheii de cautare la o

valoarea numerica intreaga; in aceasta situatie rolul functiei hash
este de a translata valoarea alfanumerica intr-o valoare intreaga
pozitiva.

Dezavantajul tabelelor de dispersie in cadrul proceselor de cautare
este descris de:

efortul suplimentar de prelucrare dat de functia hash care poate
avea in unele situatii un nivel de complexitate ridicat;

aparitia in cadrul tabelei a coliziunilor; acestea sunt generate de
situatia in care doua valori Xh si YH ce apartin domeniului de
definitie a functie hash conduc la obtinerea de valori identice,
hash(Xh) = hash(Yh); evitarea coliziunilor implica realizarea de
operatii suplimentare prin care sa se identifice pozitia elementului
in cadrul multimii.

Din aceste puncte de vedere, tabela de dispersie utilizata in procesul
de regasire a informatiei se descrie ca o structura in care datele sunt
stocate in tabele cu adresare directa, iar pozitia acestora este determinata
prin prelucrarea cheii de cautare cu o functie hash, figura 29.7.

| Cheie de ciutare |

P ;,_»_’_k__t Functie hash
o

valoarealfanumericé —> valoarenumericé

v

Valoare(giem1, Elemn]

| EVITARE COLIZIUNI |

Elem1| |Elemn/2-1|Elemn/2|EIemn/2+1| |Elemn

. Y
Tabela cu acces direct

Figura 29.7 Cautarea in tabela de dispersie

Functiile de evitare a coliziunilor, descrise in cadrul capitolului dedicat
tabelelor de dispersie, definesc metode de regadsire a elementelor ce sunt
descrise de chei cu valori diferite dar care conduc la valori hash identice
ceea ce implica pozitii identice in cadrul structurii.

Analiza comparata a metodelor de cautare in vederea alegerii
metodei care sa dea cele mai bune rezultate se bazeaza pe:

masurarea timpului de executie; metoda optima este
caracterizata de cea mai mica valoare inregistrata;

masurarea efortului procesor prin prisma numarului de cicluri
masina realizate pentru a prelucra secventa de cod asociata
metodei; codul care va genera cel mai mic nivel de cicluri masina
evidentiaza algoritmul care se va executa cel mai repede pentru
datele de test si care este cel mai eficient din punctul de vedere al
sistemului;

- masurarea zonei de memorie utilizata; algoritmul care va necesita
cel mai mic nivel de memorie internd pentru a prelucra datele
este considerat cel mai eficient din punct de vedere a spatiului.

- analiza complexitatii algoritmului din punctul de vedere a
calculelor efectuate si alegerea modelului care este cel mai
eficient.

Primele trei tehnici presupun realizarea unui program care sa
implementeze metodele de cdutare analizate si generarea unei proceduri de
testare cu inregistrarea directa a valorilor indicatorilor. Ultima abordare ia in
considerare o analiza a modelului asociat algoritmului de cautare inainte ca
acesta sa fie implementat.

Aceasta tehnica se aplica in faza de analiza a problemei de rezolvat si
din acest motiv face abstractie de mediul de implementare neluadnd in
calcul:

- platforma hardware si software pe care va rula programul;

- memoria disponibila;

- limbajul de programare utilizat;

- tipul si relatiile dintre datele de test.

Indicatorii utilizati pentru a determina complexitatea algoritmului au
caracter abstract si descriu metoda prin prisma structurii interne, a numarul
de instructiuni de comparare si a numarului de iteratii.

Din punct de vedere matematic, fiecare algoritm de cautare are
asociat un model bazat pe o functie f(n) care descrie modul in care acesta
este aplicat. De exemplu, in cazul cautdrii secventiale intr-un vector
vector,cu n elemente, modelul asociat are forma:

(
daca vector[0] = XVal, element gasit

daca vector[1] = XVal, element gasit
fcautaresecv(n)=

daca vector[n-1] = XVal, element gasit
altfel, element inexistent
\

Figura 29.8 Model asociat cautarii secventiale

Daca se considera ca principala operatie pe care e bazeaza metoda de
cautare secventiala este compararea elementului curent din vector cu
valoarea cautata, atunci complexitatea algoritmului este egala cu n, fiind
notata O(n).

In seturi reale de date de test, elementul poate fi gasit dupa o
singura operatie de cautare, dupa n/2 verificari sau acesta se poate gasi pe
ultima pozitie din vector. Din acest motiv si pentru a normaliza valorile
inregistrate pentru complexitatea algoritmilor analizati se iau in calcul cazuri
generale de executie:

- cel mai bun caz descrie situatia in care este necesar minimul de
efort procesor pentru a regasi valoarea; in practica are
probabilitatea cea mai mica de aparitie; n cazul cautarii
secventiale a unei valori intr-o lista simplu inlantuita, cel mai bun
caz este dat de gasirea elementului cautat pe prima pozitie;

- cazul mediu descrie o analiza a unui set de operatii de cautare pe
baza caruia se determina un efort mediu necesar pentru a regasi
un element; in cazul algoritmilor complecsi este dificil de
determinat acest nivel mediu;

- cel mai ineficient caz reprezinta situatia in care este necesar cel
mai ridicat nivel de efort pentru a cdauta o valoare; pentru o
analiza obiectiva a algoritmilor de cautare se utilizeaza acest
criteriu in vederea alegerii rutinei mai eficiente; in cazul cautarii
secventiale a unei valori intr-o lista simplu inlantuita, cel mai
ineficient caz este dat de gasirea elementului cautat pe ultima
pozitie.

Pe baza modelului asociat algoritmului de prelucrare se determina
nivelul de complexitate al acestuia. Chiar daca functia matematica pe baza
careia este definit modelul contine numerosi factori, pentru a determina
gradul de complexitate se ia in considere dominantul relatiei.

Din punct de vedere matematic, [Rile87], o functie, f(x), domina o
alta functie, g(x), daca exista o valoare constanta const astfel incat pentru
orice valoare x este adevarata relatia

const*f(x) > g(x) (29.33)

In domeniul informatic, pentru a determina nivelul de complexitate al
unui algoritm se utilizeaza o alta versiune a relatiei anterioare, numita
dominare asimptotica. Conform acestei teoreme, o functie f(x) domina
asimptotic o alta functie g(x) daca f(x) domina pe g(x) pentru toate valorile
mari ale lui x.

Daca se considera functiile

flx) =2%3+1 (29.34)
g(x) = 5% + 3*x + 10 (29.35)
se observa din graficul 29.9 ca pe intervalul [1;100] ambele functii cresc

constant, insa de la valoarea 31 functia f(x) prezinta o crestere mult mai
rapida decat g(x).

350000 A

300000

250000

200000

F()

150000

100000

50000

0 4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Valoare X

Figura 29.9 Exemplu functii dominante

In [Wiki07b] se prezint3

principalele caracteristici si reguli de

determinare a nivelului complexitatii, indicator denumit big-O.

Principalele niveluri

de complexitate

regasite la structurile de

prelucrare a datelor, cautare sau sortare, sunt bazate pe functii:
- constante, de tipul f(n) = 1;

- liniare, de tipul f(n) = n;

- logaritmice, de tipul f(n) = logzn;
- pétratice, de tipul f(n) = n?;

- cubice, de tipul f(n) = n’

- polinomial, de tipul f(n) = n% cuc >1;

- exponentiale, de tipul f(n) = 2" sau f(n) = a", cua > 1.

- factoriale, de tipul f(n) = n!

Tabelul 29.6 descrie comparativ influenta pe care o au diferitele
grade de complexitate asupra efortului de prelucrare

Tabelul nr. 29.6 Analiza comparata a nivelurilor de complexitate

Valoare n [f(n) =1 |f(n) = n | f(n)=log,n | f(n) = n* | f(n) = 2"
10 1 10 3.32 100 1024
100 1 100 6.64 10000 1,26 * 10%°

1000 1 1000 9.97 1000000 -
10000 1 10000 13.29 100000000 -

Pentru a analiza complexitatea structurilor de cautare descrise se ia
in considerare cazul cel mai putin favorabil.
Tabelul 29.7 descrie complexitatea algoritmilor de cautare analizati.

Tabelul nr. 29.7 Complexitatea metodelor de cautare,
cazul cel mai nefavorabil

Complexitate

metode de cautare in memoria interna

Cautare cu acces direct 0O(1)
Cdutare secventiala O(n)
Cdutare binara O(logzn)
Cautarea in tabele de dispersie O(GUpash)
Cautare in arbori binari de cautare | O(log.n)

echilibrati

Cautare in arbori B

1+logn((n+1)/2), unde N este ordinul
arborelui

metode de cautare in memoria externa

Cautare secventiala in fisier

O(n)

Cautare cu acces direct in fisier

0(1)

Cautare in fisier indexate

O(logon) pentru index implementat pe
arbori binari de cautare echilibrati

Cautare in fisier inverse

O(n)

unde GUpasy descrie gradul de utilizare a tabelei de dispersie.

Se observa ca din punctul de vedere al complexitatii utilizarea
metodelor de cautare in vector si in fisier secvential conduce la acelasi nivel

de eficientd. In cazul implement&rii celor doud metode, se observd ci citirea
unui element dintr-un vector este mult mai rapida decat citirea unui
element din fisier. De exemplu secventa

for(1 = 0; 1 < arrayLength; i++){
if(array[i] == searchvalue)
printf("\n SEARCH VALUE FOUND I');
+

necesita pentru un vector de 30000 de elemente distincte NCMV = 835
cicluri masina, fiind de doua ori mai eficienta decat secventa

int value;

FILE *pFile = fopen(''SearchTest.dat","rb');
while(1feof(pFile))

{

fread(&value,sizeof(int),1, pFile);
if(searchvalue == value)

{
printfF(C'\n FILE SEARCH VALUE FOUND !'");

return;

3

care necesita pentru acelasi set de date NCMF = 17317 cicluri masina.

Programatorul trebuie sa acorde atentie acestui aspect si trebui sa-si
fundamenteze decizia de a implementa o structura de cdutare in defavoarea
alteia pe imposibilitatea de a stoca volumul mare de date in memoria
internd sau pe obiectivul de a maximiza viteza de prelucrare a unui set
redus de date.

Daca este considerata a colectivitate C formata din elementele c;, ¢,
..., C Si identificate prin cuvinte cu valoare de cheie de regasire avand grade
de utilizare diferite, algoritmii de regasire performanti revin la a:

- determina durata operatiei de regasire stabila; aceasta
caracteristica a procesului de regasire este masurata in functie de
valoarea dispersiei statistice; aceasta este calculata pentru sirul
valorilor inregistrate la testarea performantei algoritmului; gradul
de stabilitate a operatiei tinde catre un nivel optim pe masura ce
valoarea dispersiei se apropie de nivelul zero; o alta abordare
este data de considerarea a doua loturi de procese de regasire;
cele doua serii de valori sunt analizate prin prisma mediilor m; si
my, in conditiile In care acestea nu difera semnificativ; (se iau 2
utilizatori si se inregistreaza tranzactiile) procesul se extinde la k
utilizatori ai algoritmului de regasire;

- numarul de situatii ambigue este controlat; numarul situatiilor in
care se produceau ambiguitati e redus;

- exista o situatie in care se determina un volum maxim prelucrari
si o situatie in care se determina un volum minim de prelucrari.

In cazul algoritmilor secventiali pentru cheia primului articol este
nevoie de o comparare, pentru a doua cheie sunt necesare doua comparari,
iar pentru ultimul articol n comparari. Numarul total de comparari necesar
regasirii tuturor elementelor este

n*(n+1)

NTC = (29.36)

Pentru cele n articole, numarul mediu de comparari este:

nmc = NTC _ ”T” (29.37)
n

Daca este data o structura arborescenta de cautare:

Ci

C2 C3

Cs Cs Cs C;

Figura 29.10 Structura arborescenta de cautare
Pentru regasirea elementelor sunt necesare numarul de cautari:

C; - 1 comparare
C, - 2 comparari
Cs - 2 comparari
C4 — 3 comparari
Cs — 3 comparari
Ces — 3 comparari
C, - 3 comparari

In aceastd situatie, numarul total de comparari necesar identificarii
fiecarui element din arbore este

NTC = 1*1 + 2%2 + 3*4 = Y k*2"" (29.38)

k=1

unde k reprezinta numarul de niveluri din arbore. Numarul mediu de
comparari efectuate pentru oricare element este

NMC = (29.39)

unde nv reprezintd numarul de niveluri din arbore si se considerd cd 2™ -1
reprezinta numarul de noduri dintr-o structura arborescenta binara
completa.

In ipoteza ca arborele este complet echilibrat, atunci acesta contine
pe fiecare dintre cele i = 1,2, ..., nv niveluri cate 2™ noduri.

A optimiza o astfel de structura, inseamna a gasi momentul de
reechilibrare a arborelui. Fie V; volumul de prelucrari necesar echilibrarii i a

arborelui in care au fost adaugate noduri, prin adaugarea de frunze cu chei
mai mari.

De exemplu, se considera sirul valorilor 10, 15, 21, 43 si 67 ce
formeaza arborele binar de cautare echilibrat din figura 29.11.

21

0 67

Figura 29.11 Arbore binar de cautare

Daca se adauga cheile 75, 101, 119, 400 se obtine arborele de
cautare:

Figura 29.12 Arbore binar de cautare dezechilibrat

Volumul total de comparari pe arborele neechilibrat, din figura 29.12
este VCA; = 33. De la reorganizarea i a arborelui se trece la reorganizarea
i+1 daca si numai daca

VCAi; + VCA> + ... + VCAx > Vi (2940)

Daca se considera operatia de reechilibrare a arborelui bazata pe o
parcurgere in inordine si o reconstructie a arborelui prin metoda divide et
impera pentru a insera la fiecare iteratie elementul din mijlocul intervalului,
atunci se obtine arborele echilibrat din figura 29.13.

Figura 29.13 Arbore binar de cautare reechilibrat

Luand in considerare ca operatia de inserare a unui nod nou este
echivalenta cu cautarea elementului respectiv, volumul de prelucrari al
reechilibrarii arborelui ca numar de comparatii efectuate este VRA = 25. De
asemenea, aceasta valoare este egalda cu volumul total de comparari pe
arborele echilibrat obtinut, VCA, = 25. Se observa, minimizarea volumul
total obtinut prin rearanjarea structurii, VCA, < VCA;.

Atunci cand este indeplinita restrictia, K, reprezinta momentul care
precede echilibrarea arborescentei, optimizand procesul de regasire a
informatiei. Aceasta abordare a optimizarii regasirii in structuri arborescente
urmareste nu numai reducerea efortului de cautare, ci si operatiile de
gestiune a arborelui, inserarea, respectiv, stergere de valori. Obiectivul este
de a reechilibra atunci cand eficienta cautarii este afectata si nu dupa
fiecare operatie de adaugare sau stergere noduri.

Cautarea informatiei sortate reprezinta un mod de optimizare. Se
considera sirul valorilor sortate crescator

10, 20, 25, 40,, 200 (29.41)

Daca informatia nu e sortata este dificil de stabilit un mod de oprire a
cdutdrii daca s-a depdsit o valoare.

In exemplul dat, daca se cauta elementul cu cheia 43 si s-a trecut de
cheia 50 din fisier, se conchide ca articolul cu cheia 43 nu exista.

Cautarea din mai multe directii ofera o solutie alternativa pentru
optimizarea timpului de regasire. In ciuda faptului ca solutia implica o
cresterea a nivelului de memorie ocupat, obiectivul minimizarii timpului de
prelucrare a datelor are prioritate din acest punct de vedere. Solutii practice
care implementeaza aceasta abordare definesc mai multe repere in cadrul
colectivitatii tinta.

Exista numeroase aplicatii software ce utilizeaza articole cu cheie
alfabeticd. In functie de pozitionarea relativd a valorii cheii fata de inceputul
setului sau de sfarsitul acestuia, cautarea are loc in directii diferite.

Daca sunt chei care incep cu caracterul ‘a’, atunci cautarea are loc de
la stdnga la dreapta. Daca sunt articole cautate dupa cheia j ce are valori
apropiate caracterului 'z’ atunci cautarea se realizeaza de la sfarsitul seriei
de valori.

Este necesar ca toate produsele software sa fie inzestrate cu
componente care inregistreaza informatii referitoare la modul in care s-au
efectuat prelucrarile.

De exemplu, se considera programul P care lucreaza cu un fisier in
care se acceseaza articole dupa valori cheie, ce sunt sortate crescator.

Accesul la datele aplicatiei se realizeaza de la stdnga spre dreapta,
avand ca punct de start inceputul fisierului.

Programul contorizeaza numarul de citiri din fisier si numarul de
comparari necesar identificarii articolului cautat. Acesta va gestiona
informatiile prin realizarea unei structuri asemenea celei descrise in tabelul
29.8.

Tabelul nr. 29.8 Analiza procesului de cautare si citire din fisier

Valoare cheie | Numar comparari | Numar citiri
kl a; city
kz (o) city
ki d; cit;
K dn city

In urma analizei datelor din tabel, rezulta & numarul mediu de
compardri si o dispersie o’ce descrie omogenitatea inregistrarilor. Dacd
exista T valori vor exista @,, @,, ..., @; §i 0., o;, .., o+ indicatori.

Prin teste statistice se verifica egalitatea mediilor si egalitatea
dispersiei. In ipoteza de egalitate, procesul este stabil si face obiectul
procesului de optimizare. Se imparte fisierul in doua zone de cautare, de la
articolul art; la articolul art- , si de la acest punct pana la art,. In aceasts
3]
situatie, daca valoarea cautata are o valoare mai mica decat A = art; -,

3]
cautarea are loc in prima jumatate. Daca valoarea cheii este mai mare ca A
= art. ,, atunci cautarea este aplicata in a doua jumatate.
H

Pentru aceleasi set de chei de cautare, ki, ks, .., k, se repeta
procesul, rezultand sirul numarului de cautari efectuate B, Bz, ..., Bn. Pentru
alte R loturi se obtin indicatorii 3, f,, ..., fxsi 67, 02, ..., CF.

Daca mediile si dispersiile sunt egale revine ca procesul este stabil.

Se compara mediile si dispersiile rezultate in urma celor doua teste
pentru a identifica care dintre cele doua procedee este mai bun.

Odata selectata abordarea care conduce la cele mai bune rezultate,
se imparte fisierul in trei si procedeul continua.

Se va gasi nivelul optim de impartire a fisierului pentru ca numarul de
comparari sa fie, statistic, cel mai mic.

Cautarea este un proces ce implica mai mult decat operatia de
comparare. Cand aceasta este precedata de citire, este important ca
numarul de citiri sa fie cat mai redus.

Regdsirea informatiei presupune asocierea unor chei textului. Se
considera o multime de fisiere F;, F3, ..., F, si se pune problema la cautare:

- gasirea fisierului F;;

- gasirea in fisierul F; a anumitor informatii.

Se ia fiecare fisier F;, F,, .., F, si se construieste o structura
informationala privind continutul acestuia, in care sunt retinute:

C,; - termeni generali;

C, - termeni specifici;

Cs — grad de cuprindere mare;

C, - grad de cuprindere redus, particular continutului si domeniului de
apartenenta.

Pentru fiecare fisier se construieste vocabularul si se iau termenii de
baza dupa frecvente. Se asociaza coeficientii de complexitate (C; F;), (Cz
F2), ..., (Ci F). Fisierele sunt impartite in patru categorii de complexitate C;,
C,, Cs si C4. Se studiaza elementele de vocabular si se identifica tipul de
complexitate pentru fiecare. Se ierarhizeaza cuvintele si vor rezultat la
motorul de cdutare ca pentru cuvantul cv; sunt informatii in fisiere de
complexitate cuprinse intre [a;, Bi). Din multimea de fisiere se extrag numai
acelea care au aceasta complexitate dupa care se merge pe vocabular si se
iau fisierele unde cv; au frecventa cea mai mare de aparitie.

Toate acestea presupun analiza comportamentului statistic pentru
entitati text, [Ivap05].

29.4 Mecanisme flexibile de regasire

Spre deosebire de aplicatiile clasice, aplicatiile distribuite care se
adreseaza unui numar foarte mare de clienti trebuie sa fie caracterizate prin
nivel de flexibilitate foarte ridicat.

In primul rand flexibilitatea se manifesta prin diversitatea modurilor
de introducere a datelor. Datele se introduc de la tastatura, prin coduri
bara, prin scanare sau de pe un suport extern. Sunt aplicatii care preiau
comenzi vocale.

In al doilea rand flexibilitatea se manifesta prin structura datelor de
intrare. Sunt acceptate atat date complete, cat mai ales date incomplete,
care permit totusi identificarea corecta a elementului cautat.

Expresiile care combina atribute se construiesc astfel incat sa fie
accesat din aproape in aproape acel conglomerat informational care
corespunde evenimentului, tranzactiei produsului sau serviciului de care
este interesat clientul.

Pentru a afla nota obtinuta la examen, studentul foloseste adresa de
Internet a universitatii la care acesta studiaza. Primul meniu va fi:

Student

Profesor

TESA

Studentul va alege optiunea STUDENT.
Meniul care se activeaza este referitor la facultate:

Facultati:
Matematica
Chimie
Management
Electronica
Anmul:1 2 3 4 5

Studentul selecteazi MATEMATICA si cifra 4.
Meniul urmator se refera la disciplinele din anul si facultatea

selectata:

Disciplina
Geometrie

Analiza

Ecuatii diferentiale
Algebra
Astronomie

Este selectatd optiunea ALGEBRA
Meniul urmator vizeaza introducerea numelui, prenumelui parolei

Nume: | |

Prenume: | |

Parola: | |

In cazul in care datele introduse sunt corecte, se afiseaza meniul:

Studentul - - - - - - -
A obtinut la examenul de Ia
disciplina
nota:------- -—---
corectare iegire

Selectarea optiunii continuare permite aparitia meniului disciplinelor
si pot fi selectate 1, un grup sau toate si vor fi afisate note.

Se observa ca accesarea presupune selectie. Datele de intrare sunt
numele prenumele si parola care trebuie ortografiate strict dupa reguli
convenite la inscrierea in facultate privind literele mari, literele mici si
diacriticele.

In cazul achizitiondrii unui produs, clientul acceseazi un magazin
virtual. Meniul de legatura este:

Magazinul x unde

Produse
e (Cash
e In rate

continuare

Clientul alege optiunea convenabila. Meniul urmator se refera la tipuri
de produse:

Produs
o frigidere
e telefoane
e magini de spalat
e autoturisme

Selecteaza televizoare:

Diagonala
40 cm
50 cm
60 cm
80 cm
100 cm

Selecteaza 60 cm:

Existent in stoc
Panasonic 8 500.000

LG 6 300.000

Sony 12 000.000

Siemens 11 000.000
Rate cash

Se tasteaza rate:

Venit net: 4 000.000
Suma maxima 800.000
Rata:

Afisez numar rate:
Lista valorii nete:

Data platii in ziua:
Valori nete +dobanda

Problema cautarii este definita printr-o multime de elemente a;, a,,
...., @, inzestrate cu diferite proprietati, a caror dispunere este de asemenea
diferita. Trebuie localizat un element din multime in vederea utilizarii.
Localizarea este efectuata prin procese de cautare si identificare elementul
gasit este cel cautat, are loc prelucrarea.

Problema cautarii are numeroase aplicatii si mai ales dezvoltari
teoretice in domeniul valutar intrucat apar multe necunoscute in privinta
numarului elementelor a;, a,, an, pozitiei si proprietatilor acestora.

Asemenea cautarii in aplicatiile valutare, implicatiile Internet
reprezinta numeroase necunoscute pentru clienti. Fiecare aplicatie are
specificul ei.

Modul in care este definita interfata are rolul de a determina sistemul
selectiilor de cautare a revolutionat intregul sistem al cautarii.

Este important ca intregul sistem al cautarii sa se bucure de
caracteristica de continuitate.

In primul rdnd se impune studiul interfetei aplicatiilor cele mai
frecvent referite.

In al doilea rand, se utilizeaza caracteristicile de cautare deja
cunoscute.

In al treilea rand se procedeaza la inzestrarea interfetei cu
caracteristice de reorientare, care va da din aproape in aproape o
caracteristica apropiata de cerintele materiale. Se inregistreaza ferestrele
de referire a optiunilor dupa care se reorganizeaza structura mesajelor.

In al patrulea rand, se evalueaza optiunile in asa fel incat situatia in
care se tasteaza date se reduc cat mai mult posibil.

In al cincilea rand se are in vedere gasirea tuturor posibilitatilor de
introducere date si de realizare de operatii in asa fel incat sa se asigure
completitudinea operatiilor (mod de plata de prelucrare informatii).

Cautarea clientilor necesita algoritmi flexibili si un nou mod de
abordare.

Se subordoneaza criteriile de definire chei de selectie si mai ales
optiuni care tin seama de cerintele clientilor si nu de restrictiile echipelor
care dezvolta aplicatiile.

	 29. STRUCTURI FOLOSITE ÎN PROCESE DE CĂUTARE
	29.1 Tipologii de aplicaţii
	29.2 Chei de regăsire
	29.3 Algoritmi de căutare
	29.4 Mecanisme flexibile de regăsire

