25. PROCESE DE AGREGARE SOFTWARE

25.1 Componente software

Tehnicile moderne de programare sunt insotite de instrumente
puternice care au menirea de a creste productivitatea programatorilor.

Elaborarea de programe, de componente, de secvente sau de
proceduri necesita efort de programare direct proportional cu nivelul de
complexitate cu care se doreste a fi inzestrate aceste constructii.

Activitatea de dezvoltare a aplicatiilor informatice presupune lucrul in
echipa.

Respectarea cerintelor definite in specificatii genereaza consumuri de
resurse care sunt atenuate prin:

- cresterea gradului de calificare a personalului;

- acumularea de experienta;

- utilizarea de instrumente pentru asistarea proceselor de analiza,

proiectare, programare si testare;

- masurarea nivelului de calitate si efectuarea de corectii;

- asigurarea unui management adecvat pentru fiecare etapa a
ciclului de dezvoltare.

Prezinta un interes special ca la dezvoltarea de aplicatii informatice
noi sa fie identificate o serie de componente existente in aplicatii deja aflate
in uz curent, remarcate ca fiind deosebit de performante, componente care
sa fie reutilizate.

Reutilizarea este un proces care ia proceduri, baze de date, fluxuri si
le integreaza in aplicatii informatice noi, fara a fi necesare modificari
radicale.

Reutilizarea presupune ca elementele alese sa indeplineasca
urmatoarele cerinte:

- sa fie corecte din punct de vedere al rezultatelor care trebuie
obtinute, caracteristica obtinuta printr-un proces de testare
deosebit de complex si mai ales complet;

- sa fie validate de practica si efortul de a scrie o alta componenta
echivalenta sa nu se justifice;

- sa existe dreptul de proprietate sau de utilizare, astfel incat
reutilizarea sa nu ridice probleme de ordin juridic;

- sa fie accesibile fie ca text sursa, fie intr-o forma integrabila,
pentru a permite evaluarea si preluarea;

- sa contind parametri de acelasi tip cu cei din aplicatia care se
construieste.

Agregarea software este un proces care:

- presupune existenta de componente software de foarte buna
calitate;

- conduce la generarea de componente software prin reutilizare de
componente existente prin dezvoltarea de procese de
transformare a secventelor existente;

- asigura un nivel de complexitate mai redus decat suma
complexitatilor componentelor initiale;

- realizeaza componente cu nivel de performanta mai mare sau
egal cu nivelul de performantda a componentelor initiale ca parti
ale unei structuri liniare.

Agregarea de software este obtinuta prin procedee mecanice care
garanteaza calitatea produsului final, ca fiind strict dependenta de nivelul
calitatii componentelor initiale, fara a deteriora acest nivel.

Procesele de elaborare componente software se caracterizeaza prin:

durate de executie a operatiilor;

resurse materiale;

utilizarea fortei de munca de inalta calificare;

aplicarea unor proceduri de executie a operatiilor;

masurarea calitatii pentru fiecare componenta;

estimarea riscurilor si luarea de masuri pentru diminuarea
efectelor;

obtinerea unui produs precis definit ca output.

Pentru productia de componente software procesele includ: limbaje
de programare, instrumente de asistare, resurse infinite sau fara uzura

fizica.

Procesele de agregare au ca intrari:

componente software validate de practica;

instrumente de asistare;

forta de munca de inalta calificare;

un obiectiv foarte precis definit care spune clar ce rezultate
trebuie sa ofere noua procedura rezultata din procesul de
agregare.

Procesele de dezvoltare de componente si de agregare trebuie sa se
bazeze pe planuri de realizare definite prin:

nivel maxim de resurse de consumat;
durata maxima acceptata de realizare;
limita maxima de suportabilitate a costurilor.

25.2 Agregarea pe orizontala

Se considera componentele software P,,P,,P;,,..., P,.
Procesul de agregare pe orizontala pentru aceste componente consta

realizarea unei liste de parametri prin reuniunea listelor de
parametri, cel mult cu repozitionare in vederea obtinerii de
subliste omogene;

concatenarea de secvente de instructiuni S, || S, || S; || ... || S,

in vederea obtinerii secventei agregate S, .

Agregarea pe orizontala este o reutilizare de secvente din N
proceduri, obtinand o singura procedura PA.
Daca exista procedurile care stabilesc:

elementul minim dintr-un sir si pozitia acestuia;
elementul maxim dintr-un sir si pozitia acestuia;

atunci procedura agregata:

preia ca parametri sirul X si numarul N de componente ale
acestuia;

concateneaza secventele de alegere a elementelor minim si
maxim;

concateneaza secventele de stabilire a pozitiillor minimului si
maximului.

initializeaza un vector de patru componente care returneaza cele
patru valori gasite (minimul, maximul, pozitia minimului si pozitia
maximului).

Reprezentarea grafica a procesului de concatenare include:

cele doua proceduri initiale;

procedura rezultat;

sagetile care indica modul in care se efectueaza operatia de
reuniune;

sagetile care definesc procesul de concatenare.

Agregarea pe orizontalda presupune numai operatii de intersectie,
reuniune, concatenare.

Efortul de a dezvolta agregari pe orizontala este redus, iar riscurile de
a obtine pierderi de ordin calitativ, sunt, de asemenea, reduse.

11

L2

=]
~+
=
=)

i = X[L1;
pozmin = 0;
for(1=0; i<n;i++)

if(min < x[i])
{

min = x[i];

POZITT = T,]

A

L1U

imtmax = XLl
pozmax = O;
for(1=0; i<n;i++)

if(max > x[i])
{

max = x[i];

poZpax = T,

Y/

{int min = x[1];

int[] rez = new ink

' for(i=0; i<n;i++)

if(min < x[i])
{

I = X0,
pozmin = 1i;

b
for(1=0; i<n;i++)
{

if(max > x[i]

Figura 25.1 Procedura agregata MinimMaxim()

25.3 Agregarea pe verticala

Este un proces mai complex, care presupune reutilizare de software
pentru a obtine o componenta cu alte caracteristici.

Programatorul care dezvolta procese de agregare software pe
verticala porneste de la doua sau mai multe proceduri, preia secvente din
acestea si le integreaza intr-o constructie proprie.

Noua constructie trebuie sa fie mai performanta decat daca la
executia aplicatiei informatice sunt apelate procedurile asa cum sunt ele.

Prin agregarea pe verticala:

- se reduce numarul de linii sursa;

- se reduce numarul de instructiuni care se repeta;

- se introduc teste pentru selectia de secvente ce corespund

anumitor prelucrari;

- conduce la obtinerea unei constructii cu grad de complexitate mai

ridicat decat complexitatile procedurilor initiale;

Daca se agrega pe verticala procedurile de aflare a minimului si,
respectiv a maximului, se va obtine o procedura in care:

- testele au in comun instructiunea de ciclare;

- se introduce un test pentru situatia in care trebuie ales numai
minimul sau numai maximul.

Schema grafica de agregare pe verticala include:

- cele doua proceduri initiale;

- procedura rezultat;

- fluxurile de includere a secventelor existente, pentru alegere;

- fluxul corespunzator structurii repetitive.

Lungimea programului este data ca numar de instructiuni sau numar
de linii sursa.

Lungimile procedurilor P,P,,P,,...,P, sunt L,L,,L,,...,L,, unde L,

1
reprezintd numarul de linii sursa. S-a avut grija ca o linie sursa sa
corespunda unei instructiuni sau unei delimitari de bloc.

Textul sursa este:
Lg(lungime secventa) = 14 linii sursd (25.1)

e Procedura pentru aflarea minimului — Minim()

1 int Minim (int[] x, int n)

2 {

3 int min = x[0];

4 int pozmin = 0;

5 for(1=0; i<nji++)

6 {

7 if(min < x[i])

8 {

9 min = x[i];
10 pozmin = 1i;
11 }

12 }

13 return min;

14 }

e Procedura pentru aflarea maximului - Maxim()

1 int Minim (int[] x, int n)

2 {

3 int max = x[0];

4 int pozmax = O;

5 for(1=0; i<nji++)

6 {

7 if(max > x[i])

8 {

9 max = x[i];
10 pozmax = 1i;
11 }

12 }

13 return max;

14 }

e Procedura concatenata de aflare a minimului si maximului — MinMax()

int[] MinimMaxim (int[] x, int n)

int[] rez = new intl6[];
int min = x[0];

A WNPF

5 int max = x[0];

6 pozmin = O;

7 pozmax = 0;

8 for(i=0; i<n;i++)

9 {

10 if(min < x[i])

11 {

12 min = x[i];

13 pozmin = i;

14 }

15 ift(max > x[i])

16

17 max = x[i];

18 pozmax = i;

19 }

20 }

21 rez[0] = min;

22 rez[1] = pozmin;

23 rez[2] = max;

24 rez[3] = pozmax;

25 return rez;

26 }
Lg(Minim) = 14 linii sursa (25.2)
Lg(Maxim) = 14 linii sursa (25.3)

Lg(MinimMaxim) = 26 linii sursa- procedura agregata (25.4)
Lg(procedurad agregatd) <= L(Minim) + L(Maxim) (25.5)

Se calculeaza si complexitatile procedurilor Minim() si Maxim(),
MinimMaxim(). Definire operatori si operanzi:

e=a+b+c+d+e*f (25.6)

operanzi: a,b,c,d,e,f - 6 operanzi
operatori: =,+,+,+,+,* - 6 operatori

C = operanzi * log,operanzi + operatori*log,operatori (25.7)

Se considera procedurile pentru:

- adunarea matricelor A si B pentru a obtine matricea rezultat C;
- scaderea matricelor A si B pentru a obtine matricea rezultat C;
- transpunerea matricei A;

- Inmultirea de matrice A si B pentru a obtine matricea rezultat C.
Construirea unei proceduri care sa permita evaluarea expresiilor:

C=A+B
C=A"+B

C=A+B'

C=A'+B' (25.8)
C=A*B

C=A"*B

C=A*B'
C=A"*B’,

presupune agregare pe verticala ce include:
- secventa de selectie;
- secventele de prelucrare;
- implementarea structurilor repetitive;
- includerea transpunerilor de matrice prin intermediul expresiilor
indiciale.
Reprezentarea grafica a procesului de agregare este formata din:
- procedurile de calcul;
- fluxuri de includere;
- fluxuri de reluare pentru expresii indiciale in cazul operatiilor cu
matrice transpuse.
Trebuie gasite modalitati foarte clare de a asigura echilibrul intre
lungimea procedurii rezultate si volumul de prelucrari.

25.4 Ortogonalitatea software agregat

Ortogonalitatea este dependenta de complexitatea software.
Pentru complexitate se ia in considerare modelul HALSTEAD, CH() dat de
relatia:

CH(P,)=n, *Iogz (n)+n, Iogz (n,) (25.9)

in care se definesc:
e n,- numarul de operanzi definiti in procedura P, ;

e n, - numarul de operatori definiti in procedura P, ;
Pentru procedurile independente P,,P,,P;,...,P, se calculeaza
complexitati individuale.

Tabelul nr. 25.1 Complexitatea procedurii Minim()

Procedura Minim() Operand | Frecventa Operator Frecventa
int Minim (int[] x, intn) X 1 int 3
n 1 [1 1
0] 2
{ - - { 1
int min = x[1]; min 1 int 1
X 1 [] 1
1 1 = 1
pozmin = 0; pozmin 1 = 1
0 1
for(i=0; i<n;i++) i 3 for 1
0 1 O 1
n 1 = 1
< 1
++ 1
{ - - { 1
if(min<x[i]) min 1 if 1
X 1 0] 1

i 1 [] 1
< 1
{ - - { 1
min = x[i]; min 1 = 1
X 1 [1 1
i 1
pozmin = i; pozmin 1 = 1
i 1
hs - - hs 1
hs - - hs 1
hs - - hs 1
return (min); min 1 return 1
Q 1
hs - - hs 1
TOTAL - 21 - 31
C = 246,37, complexitatea pentru procedura de Minim().
Tabelul 25.2 Complexitatea procedurii Maxim()
Procedura Minim() Operand | Frecventa Operator Frecventa
int Maxim(int[] x, int n) X 1 int 3
n 1 [] 1
0 2
{ - - { 1
int max = x[1]; max 1 int 1
X 1 [] 1
1 1 = 1
pozmax = 0; pozmax 1 = 1
0 1
for(i=0; i<n;i++) i 3 for 1
0 1 O 1
n 1 = 1
< 1
++ 1
{ - - { 1
if(max>x[i]) max 1 if 1
X 1 O 1
[1 [1
> 1
{ - - { 1
max = X[i]; max 1 = 1
X 1 [1 1
i 1
pozmax = i; pozmax 1 = 1
i 1
)s - - hs 1
hs - - hs 1
hs - - hs 1
return (max); max 1 return 1
0] 1
)s - -) 1
TOTAL - 21 - 31

C = 246,37 , complexitatea pentru procedura de Maxim().

Tabelul nr. 25.3 Complexitatea procedurii agregate MinimMaxim().

Procedura Operand Frecventa Operator |Frecventa
MinimMaxim()
int[] MinimMaxim (int[] X 1 int 2
X, intn) n 1 [] 2
0 1
{ - - { 1
int min = x[1]; min 1 int 1
X 1 = 1
1 1 [] 1
int max = x[1]; max 1 int 1
X 1 = 1
1 1
int[] rez = new intl16[]; rez 1 int 1
int16 1
[] 2
= 1
new 1
for(i=0; i<n;i++) i 3 for 1
0 1 O 1
n 1 = 1
++ 1
< 1
{ - - { 1
if(min < x[i]) min 1 if 1
X 1 O 1
i 1 [] 1
< 1
{ - - { 1
min = x[i]; min 1 = 1
X 1 [] 1
i 1
pozmin = i; pozmin 1 = 1
i 1
b - - b 1
b - b 1
for(i=0; i<n;i++) i 1 for 1
0 1 O 1
n 1 = 1
< 1
++ 1
{ - - { 1
if(max > x[i]) max 1 if 1
X 1 O 1
i 1 [1
> 1
{ - - { 1
max = Xx[i]; max = 1

X [] 1
i

pozmax = i; pozmax 1 = 1

i 1
b - b 1
rez[0] = min; rez 1 [] 1
min 1 = 1

0 1
rez[1] = pozmin; rez 1 [] 1
pozmin 1 = 1

1 1
rez[2] = max; rez 1 [] 1
max 1 = 1

2 1
rez[3] = pozmax; rez 1 [] 1
pozmax 1 = 1

3 1
b - - b 1
return (rez); rez 1 return 1
0] 1
b - - b 1
TOTAL - 43 - 60

C = 589,27 , complexitatea pentru procedura de MinimMaxim().

Pentru ansamblul de proceduri P,P,,P,,...,P, notat si P,...,P, care
sunt intrari in procesul de agregare, se calculeaza complexitatea globala

CG, data de relatia:

CG = SUMA(C(PR)), i=1, 2, 3.., N

(25.10)

Ortogonalitatea a doua proceduri Pi si Pj este indicatorul prin care se
evidentiaza cat de diferite sunt instructiunile care alcatuiesc cele doua

proceduri.

Indicatorul de ortogonalitate H() pentru procedurile P, si P, este date

de relatia:

H(P, Pj) = f(Ci/Cj)

unde:

e C, - complexitatea procedurii P;;

e C; - complexitatea procedurii P;.

Dacd H(P,, P;) = 0 inseamna ca procedurile sunt identice.
Dacd H(P,,P;) = 1 inseamna ca procedurile sunt total diferite.

In cazul procedurilor rezultate in procesul de agregare se observa c&:
- ortogonalitatea presupune o procedura rezultat si o multime de

proceduri initiale;

- indicatorul de ortogonalitate corectat este dat de relatia:

H(PA; P,,P,,...,P,) = f(C,, C,C,,....Cy) (25.12)
H(PA, P,,...,N) = f(C,,CG) (25.13)

Este de asteptat ca atunci cadnd se studiaza complexitatea
procedurilor rezultate din procesul de agregare sa se studieze
ortogonalitatea produsului final.

Inegalitatea proceselor de ortogonalitate: ortogonalitatea procedurilor
din agregare pe verticala.

Trebuie evidentiata aceasta inegalitate prin calcule matematice si
experimental.

25.5 Optimizarea in procese de agregare

Optimizarea proceselor de agregare trebuie privita ca proces de
imbunatatire.

Se definesc criteriile de optim:

- minimizarea complexitatii;

- minimizarea duratei de elaborare proceduri;

- maximizarea calitatii;

- minimizarea duratei de executie a programului;

- minimizarea volumului de prelucrari;

- maximizarea ortogonalitatii.

Avand in vedere ca agregarea este un proces de transformare,
optimizarea presupune mentinerea caracteristicilor de calitate si de
performanta intre limite deja stabilite si deplasarea spre una dintre
extreme, cand este definit un anumit obiectiv.

Daca se considera procedurile P, si P, avand nivelurile Nh; si Nh;

pentru caracteristica de calitate CL,, procedura agregata PA; are nivelul de
calitate care indeplineste conditia:

NA, <MIN{NH,,NH } (25.14)

Pentru a dezvolta procese de optimizare in agregarea de proceduri P,
si P, seiau in considerare:
- eliminarea de subexpresii comune procedurilor B, P;;

- eliminarea de invarianti rezultati din concatenare de secvente;

- regruparea de cicluri repetitive;

- lucrul cu variabile elementare;

- eliminarea codului mort;

- reconstruirea expresiilor relationale;

- restructurarea secventelor de salt conditional;

- alegerea tipurilor care evita conversiile;

- eliminarea operatiilor de citire/scriere.

Daca se considera procedurile pentru calcul de medii aritmetice,
geometrice, armonice ponderate, agregarea pe orizontald conduce la o
procedura prin care se calculeaza toate mediile.

Agregarea pe verticala cu cresterea generalitatii conduce la reducerea
numarului de linii sursa si la reducerea volumului de prelucrari.

Daca se urmareste introducerea unor selectii, se obtine o procedura
cu nivel de complexitate intermediara.

25.6 Rezultate experimentale

Se considera clasele de aplicatii informatice CL,, CL,,...,CL,. Din

fiecare clasa de aplicatii C, se considera procedurile P, R,,... P, . Se agrega

aceste proceduri.

Rezulta proceduri agregate atat pe orizontala cat si pe verticala. Se
calculeaza complexitatile acestor proceduri. Se calculeaza ortogonalitatile.
Se conchide ca efortul de ortogonalitate se justifica.

Rezultatele experimentale presupun:

- crearea de loturi omogene de proceduri;

- stabilirea grupelor de proceduri care intra in procesul de
agregare, construind un tabel pe linii cu procedurile initiale,
independente, iar pe coloane cu procedurile agregate;

- realizarea de agregari pe verticala si pe orizontald, functie de
necesitatile aplicatiilor informatice noi;

- calculul complexitatilor procedurilor initiale si a procedurilor
agregate;

- calculul ortogonalitatilor;

- stabilirea de praguri care incadreaza procesul de agregare si-|
diferentiaza de procesul de reinginerie a aplicatiilor informatice.

Organizarea prelucrarilor pentru a obtine rezultate experimentale
semnificative presupune:

- stabilirea de proceduri de colectare a procedurilor destinate

agregarii;
- efectuarea de masuratori pe masura ce se constituie baza de
proceduri destinate agregarii;

- efectuarea de agregari dinamice pe masura ce apar cerinte in
acest sens;

- efectuarea imediata a masuratorilor pentru procedurile agregate;

- preluarea de informatii si stabilirea de decizii in vederea utilizarii
de proceduri agregate;

- stabilirea limitelor procesului de agregare, in ceea ce priveste
criteriile de performanta ale aplicatiei informatice in anasamblul
ei.

Studierea stabilitatii procesului de agregare se realizeaza prin:

- constituirea de loturi de proceduri cu grade diferite de
omogenitate;

- calcul ortogonalitatii procedurilor agregate din fiecare lot;

- analiza ortogonalitatii intre loturi;

- daca ortogonalitatea nu difera statistic, rezultda ca procesul este
stabil.

Stabilitatea se studiaza pe clase de proceduri scrise in acelasi limbaj

de programare, chiar cu aceeasi tehnica.

Extensiile se efectueaza din aproape in aproape, spre generalizare

atunci cand este cazul, daca ortogonalitatea nu difera semnificativ, pentru:

- proceduri cu grade diferite de omogenitate, scrise in acelasi

limbaj;

- proceduri omogene scrise in limbaje diferite;

- pentru proceduri de complexitati foarte diferite, scrise in limbaje

diferite.

Odata definite complet tipologiile de agregari se creaza premise
pentru elaborarea de instrumente care sa automatieze procesele.

Schemele fluxurilor arata ca aceste instrumente sunt realizabile.

Agregarea se planifica, fapt care impune ca procedurile ce fac obiectul
agregarii sa indeplineasca cerinte de calitate, verificate si mai ales validate
in executiile curente ale produselor program la beneficiari.

Trebuie sa coexiste atat procedurile initiale cat si procedurile
agregate.

Referirea unora sau a celorlalte se efectueaza strict depinzand de
contextul definit de noile aplicatii informatice aflate in constructie.

Chiar daca se lucreaza cu proceduri testate si validate, este deosebit
de important ca si procedura rezultata in procesul de agregare sa fie supusa
testelor cu aceeasi rigurozitate cu care au fost testate procedurile initiale.

In cazul agregarii pe verticala se urmareste dezvoltarea de procese
de optimizare, intrucat, procedura rezultata trebuie sa fie performanta chiar
daca ii creste gradul de complexitate.

Agregarea software este o activitate complexa care presupune:

- reutilizare de software;

- integrare de secvente;

- transformari de liste de parametri ;

- transformari de expresii de referire ;

- transformari de expresii indiciale ;

- transformari de expresii relationale in sensul cresterii generalitatii

acestora.

Studiul proceselor de agregare se aprofundeaza prin dezvoltarea de
biblioteci de proceduri astfel incat apelul procedurilor sa conduca la
optimizari in executia programelor.

