
22. UTILIZAREA STRUCTURILOR DE DATE ÎN 
CLONAREA INFORMATICĂ 

 
 

22.1 Conceptul de ortogonalitate a elementelor 
 
Indiferent de forma de existenţă a produselor şi serviciilor în 

domeniul informaticii, evidenţierea şi gestionarea procesului de clonare 
reprezintă o activitate importantă întrucât limitarea clonelor creează 
premise obţinerii de software performant şi de atragere de resurse 
financiare pentru dezvoltarea producţiei şi calificarea personalului. În acest 
scop, se impune dezvoltarea de instrumente software care să analizeze 
arhitecturi hardware, produse software şi baze de date existente într-o arie 
de utilizare precis delimitată şi să identifice clonele existente. În cazul în 
care clonele şi procesul de clonare depăşesc limitele definite printr-un cadru 
legal existent la un moment dat se procedează la efectuarea de corecţii pe 
toate planurile.  

Astfel de produse software sunt realizate deja pentru stabilirea 
părţilor comune din texte redactate cu procesoarele de tip Word şi pentru 
identificarea clonelor din programe C++ precum şi depistarea elementelor 
de proporţionalitate care generează clone în tabele construite prin prelucrări 
de tip matriceal. Absenţa clonelor este specifică datelor ortogonale. 

Două drepte sunt ortogonale dacă unghiul format la intersecţia 
acestora are cosinusul egal cu zero, cu alte cuvinte cele două drepte sunt 
perpendiculare. Un ansamblu de drepte este ortogonal dacă dreptele ce-l 
compun sunt perpendiculare două câte două. 

Două plane sunt ortogonale dacă unghiul format la intersecţia lor are 
cosinusul egal cu valoarea zero, adică cele două plane sunt perpendiculare. 
Un ansamblu format din mai multe plane este ortogonal dacă planele care îl 
formează sunt ortogonale două câte două. 

Doi vectori sunt ortogonali dacă produsul scalar al acestora este nul. 
În continuare o dată este reprezentată uzual ca un număr (125 sau 0 

sau –400.72 sau +25.3e-4) sau un şir de caractere (“maşina” sau “125” sau 
“Cluj-Napoca-2000”).       

Extinzând, rezultă că datele D1 şi D2 sunt ortogonale semantic, în 
cazul în care conţinutul informaţional al acestora, sensul lor, diferă într-o 
manieră categorică şi semiotic, dacă acestea au o formalizare matematică 
total diferită. 

Ortogonalitatea reprezintă diferenţa dintre două entităţi. Dacă datele 
sunt complet diferite, atunci ele sunt ortogonale. Forma pe care o iau 
indicatorii de ortogonalitate este strâns legată de tipul şi complexitatea 
datelor comparate şi specificul analizei. 

Se consideră colectivitatea KOL = {ek1, ek2, …, eknek}, având nek 
elementele omogene. Elementele colectivităţii sunt descrise prin intermediul 
a nca caracteristici ale colectivităţii, Ch1, Ch2, …, Chnca. 

Pentru un element eki, ce aparţine colectivităţii KOL, nivelurile 
caracteristicilor sunt evidenţiate de următorul tuplu: 

 
eki = (VChi1 , VChi2 , …, VChi,nca) (22.1) 

 
unde Vchik este nivelul caracteristicii Chk pentru elementul eki.   



Un element x este ortogonal pe colectivitatea KOL dacă şi numai 
dacă:  

 
< x, eki > = 0 (22.2) 

 
oricare ar fi eki, element al colectivităţii. 

Două seturi de date sunt ortogonale dacă ele nu au nimic în comun. 
Elementele  eki şi ekj sunt ortogonale dacă valorile situate pe poziţiile 
similare sunt distincte. Identitatea a două seturi de date se defineşte în mod 
contrar ortogonalităţii. Elementele  eki şi ekj sunt identice dacă au acelaşi 
volum, iar valorile de pe poziţiile similare sunt egale.  

Dacă se consideră I indicatorul asociat identităţii şi O indicatorul 
asociat ortogonalităţii elementelor, atunci: 

 
I = 1 – O (22.3) 

 
Ortogonalitatea seturilor de date joacă un rol important în 

dezvoltarea modelelor cu un nivel ridicat al calităţii. Identificarea unică a 
unui element dintr-o colectivitate are loc pe baza conceptului de amprentă.  

Amprenta datelor reprezintă o succesiune de caracteristici obiectiv 
măsurabile. Caracteristicile individualizează datele şi determină ca în cazul 
în care nivelurile lor sunt diferite toate pentru date diferite sau sunt identice 
pentru date identice. 

În cazul datelor reprezentate ca entităţi text, amprenta se 
construieşte prin efectuarea sondajului statistic. 

Contribuţia originală la dezvoltarea domeniului Di este rezultatul 
activităţii de creaţie. Ea vizează următoarele aspecte [Popa05]: 

- introducerea şi definirea de concepte noi care completează sau 
îmbunătăţesc cadrul conceptual al domeniului; 

- dezvoltarea de tehnici şi metode noi de analiză prin introducerea 
de noi instrumente, sisteme de evaluare, algoritmi de 
sistematizare şi prelucrare a datelor; 

- punerea la punct, completarea sau introducerea de noi 
metodologii de descriere a ciclului de viaţă pentru entităţile 
dezvoltate în domeniul Di; 

- elaborarea de studii de caz cu un puternic impact asupra lucrului 
cu entităţi în domeniul Di. 

Este aproape imposibil să se construiască entităţi cu ortogonalitate de 
100%. Plusul de valoare este adus pe baza elementelor existente la care se 
adaugă, se dezvoltă sau se corectează noi aspecte care prezintă importanţă 
în domeniu. 

Noile entităţi cuprind o foarte mare parte din elementele deja 
construite. În analiza ortogonalităţii partea cea mai importantă o constituie 
identificarea şi cuantificarea elementelor cu un ridicat nivel de noutate. 

Conceptul de clonare informaţională este strâns legat de cel al 
reutilizării.  

Termenul clonare îşi are originile în cuvântul grecesc klon. 
Semnificaţia cuvântului este cea de reproducere a sistemelor, produselor 
sau informaţiei prin constituirea de entităţi separate, dar cu acelaşi conţinut. 
A clona o entitate ET înseamnă a derula procese prin care se generează noi 
entităţi care au acelaşi conţinut şi îndeplinesc aceleaşi funcţii. 



De exemplu, pentru entităţile software, clonarea presupune obţinerea 
de noi produse, diferite din punct de vedere sintactic, dar identice din cel al 
funcţiilor îndeplinite. În acest caz, procesele de clonare presupun efectuarea 
transformărilor [Ivan03]:  

- înlocuirea cuvintelor cu sinonime; există operaţii care se 
implementează prin mai multe modalităţi, utilizând cuvinte 
diferite; în acest caz, procesele de clonare se referă la funcţiile 
entităţii software; 

- eliminarea secvenţelor care nu joacă un rol critic; secvenţele 
vizează implementarea operaţiilor de normalizare, sistematizare, 
pregătire apel de subrutine; pentru a asigura caracterul de 
generalitate pentru entitatea software dezvoltată, este necesar să 
se efectueze validări; pentru o entitate concretă nu este 
obligatoriu ca validările să fie implementate; 

- înlocuirea secvenţelor de cod cu secvenţe echivalente; constă în 
schimbarea succesiunii paşilor concomitent cu detalierea sau 
generalizarea secvenţelor de cod asociate; procesele de clonare 
privesc natura prelucrărilor care, pentru aceleaşi intrări, conduc la 
obţinerea aceloraşi rezultate;  

- optimizarea subexpresiilor comune; subexpresiile comune sunt 
incluse într-o structură căreia i se atribuie un nume generic; în 
entitatea software, subexpresiile comune sunt înlocuite cu noua 
structură; se modifică doar modul în care subexpresiile sunt 
referite; 

- eliminarea secvenţelor redundante; nu afectează prelucrările 
specificate în algoritm, ci numai modul de reprezentare a 
programului sursă ca structură şi conţinut; 

- concatenarea structurilor repetitive; pentru structurile repetitive 
având acelaşi număr de iteraţii sau aceeaşi condiţie de oprire sunt 
reunite expresiile care se execută în cadrul acestora; entitatea 
software rezultată este identică sub aspectul prelucrărilor şi 
funcţiilor implementate, dar diferită ca structură; 

- conversia formatului de stocare a datelor; constă în modificarea 
structurilor utilizate în stocarea datelor; conţinutul structurilor este 
identic; în schimb, diferă modul de organizarea externă a datelor; 

- schimbarea structurilor de date utilizate; constă în modificarea 
modului de organizare internă a datelor; datele şi prelucrările sunt 
identice, dar diferă modul de reprezentare a lor; 

- aducerea programelor la o formă comună; presupune translatarea 
în plan matematic a caracteristicilor entităţilor software; scopul 
este de a efectua analize comparative pe entităţi software, prin 
asigurarea omogenităţii reprezentării acestora;  

- restructurarea programelor; presupune inventarierea structurilor 
implementate  în entitatea software şi stabilirea succesiunii lor; 
pentru secvenţe de structuri, se dezvoltă structuri echivalente ca 
prelucrări efectuate; 

- translatarea software; constă în transformarea unei entităţi scrisă 
într-un limbaj de programare într-o entitate dezvoltată cu un alt 
limbaj. 

Cel mai frecvent, procesele de clonare sunt derulate pe baza operaţiei 
de copiere a conţinutului. Copierea entităţilor reprezintă operaţia de 



duplicare a conţinutului acestora. În funcţie de tipului suportului de stocare, 
există mai multe forme de copiere. 

 
 
22.2 Indicatori ai diferenţelor măsurate dintre proceduri 
 
Procedurile dintr-un program sunt asemănătoare din următoarele 

puncte de vedere: 
- problema pe care o rezolvă; 
- instrumentele folosite; 
- funcţiile pe care le realizează; 
- tehnicile de proiectare; 
- performanţele. 
Este preferabil sa se construiască proceduri şi biblioteci de proceduri 

în scopul reutilizării acestora pentru a creşte productivitatea programatorilor 
şi pentru a reduce volumul de munca vie încorporată în programele noi care 
se elaborează. În cazul în care pentru o aceeaşi tipologie de prelucrări se 
scriu mai multe proceduri, costurile aplicaţiei informatice cresc nejustificat. 

Pentru a controla conţinutul textelor sursă din produsele software 
elaborate şi utilizate  în vederea reducerii ponderii componentelor identice 
realizate accidental este necesar să se evalueze permanent ortogonalitatea 
procedurilor existente în aplicaţiile aflate în uz curent sau în curs de 
elaborare. 

Astfel, se impune definirea unui sistem de indicatori cu scopul de a 
evalua asemănarea existenta între proceduri. 

Se consideră două proceduri Pi şi Pj. Gradul de asemănare între cele 
două componente ale colectivităţii formată din produsele software 
elaborate, se determină ca o medie geometrică între indicatorii ce 
caracterizează asemănarea procedurilor în funcţie de criteriile considerate:  

- dimensiune ca număr de instrucţiuni; 
- frecvenţa de apariţie a caracterelor alfabetice; 
- frecvenţele de apariţie a cuvintelor unui vocabular dat de către 

utilizator; 
- frecvenţele de apariţie a cuvintelor care formează cele două 

proceduri; 
- frecvenţele de apariţie a diferitelor tipuri de date; 
- complexitatea secvenţelor program. 
Primul indicator J1 caracterizează asemănarea procedurilor Pi şi Pj din 

punctul de vedere al lungimii acestora şi se calculează ca raport între 
lungimea procedurii Pi şi lungimea procedurii Pj . 

                     

),max(

),min(
1

ji

ji

LL

LL
J   (22.4)                                                  

 
unde: 
 Li  – lungimea în octeţi a procedurii Pi; 
 Lj  – lungimea în octeţi a procedurii Pj; 

Aceasta  se realizează pentru a determina un grad de asemănare 
relevant a cărui valoare să fie cuprinsă în intervalul [0; 1]. 



Al doilea indicator J2 are în vedere surprinderea asemănării dintre  
cele două proceduri Pi şi Pj în funcţie de frecvenţele de apariţie a 
caracterelor alfabetice.  

 

NTC

nca
J

NTC

i
i

 1
2   (22.5)     

 
unde:  
 NTC  – reprezintă numărul total de caractere alfabetice (mari şi mici); 
 ncai  – ia una din următoarele valori: 

 0, dacă pentru caracterul i frecvenţele de apariţie în cele 
două proceduri sunt diferite; 

 1, dacă pentru caracterul i frecvenţele de apariţie în cele 
două proceduri sunt identice. 

Al treilea indicator J3 reflectă gradul de asemănare a celor două 
proceduri în funcţie de un vocabular furnizat de către utilizator.  

 

NCV

ncv
J

NCV

i
i

 1
3   (22.6)   

 
unde: 
 NCV  – numărul de cuvinte al vocabularului pentru care frecvenţele de 

apariţie în cele două proceduri nu sunt egale şi nule pentru un 
cuvânt dat; 

 ncvi  – ia una din următoarele valori:  
 0, dacă frecvenţele pentru cuvântul i sunt diferite sau egale, 

dar nule;  
 1, dacă frecvenţele pentru cuvântul i sunt identice şi diferite 

de zero. 
 Următorul indicator, J4, are în vedere criteriul de comparare a 

elementelor privind frecvenţele de apariţie a totalităţii cuvintelor care 
compun cele două proceduri. 

 

NTCV

ncvf
J

NTCV

i
i

 1
4  (22.7)  

 
unde: 
 NTCV  – numărul total de cuvinte al celor două elemente, cuvinte care 

sunt distincte; 
 ntcvi  – ia una din următoarele valori:  

 0, dacă frecvenţele pentru cuvântul i sunt diferite sau 
cuvântul i nu se regăseşte în cealaltă procedură;  

 1, dacă pentru cuvântul i frecvenţele sunt identice în cele 
două proceduri.  

Al cincilea indicator, J5, pune în evidenţă asemănarea a două 
elemente în funcţie de structura lor.  

 



NMES

NESC
J 5   (22.8)   

 
unde: 
 NESC  – numărul de elemente structurale comune celor două proceduri 

considerate, respectiv Pi şi Pj; 
 NMES  – numărul minim de elemente structurale a celor două proceduri 

Pi şi Pj. 
Următorul indicator, J6, determină gradul de asemănare a 

elementelor prin utilizarea unei matrice de precedenţă. Acest grad de 
asemănare se foloseşte pentru analiza gramaticală a elementelor.  

 

),max(

),min(
6

ji

ji

NCINCI

NCINCI
J   (22.9) 

 
unde: 
 NCIi  – numărul de cuvinte interschimbabile din procedura Pi; 
 NCIj  – numărul de cuvinte interschimbabile din procedura Pj; 

Aceasta  se realizează pentru a determina un grad de asemănare 
relevant a cărui valoare să fie cuprinsă în intervalul [0; 1]. 

Ultimul indicator, J7, are în vedere determinarea gradului de 
asemănare a celor două elemente din punctul de vedere al complexităţii 
acestora.  

Gradul de complexitate se determină conform relaţiei: 
    

cmplx = n*ln(n) (22.10) 
 
unde n reprezintă numărul de operatori ale elementului. 

 

),max(

),min(
7

ji

ji

cmplxcmplx

cmplxcmplx
J   (22.11) 

 
unde cmplxi şi  cmplxj reprezintă complexităţile celor două proceduri Pi şi Pj. 

Gradul de asemănare a celor două proceduri, J, reprezintă, de fapt, o 
sinteză a gradelor de asemănare calculate după cele şapte  criterii amintite, 
realizând o omogenizare a acestor indicatori. 

 

7

7

1




i

iJJ     (22.12) 

 
În final, pentru un produs software se determină indicatorul agregat 

Jn care măsoară gradul de asemănare a procedurilor ca medie geometrică 
între gradele de asemănare dintre toate componentele ce formează un 
produs software, componentele fiind luate două câte două. 

 

2

1

n iC
k

i

n
in JJ 



    (22.13) 



 
unde: 
 Cn 2   – numărul de combinaţii posibile de proceduri luate două câte două;   
 Ji  – valori indicatori calculate pentru fiecare două proceduri 

considerate; 
 Ni  – frecvenţa de apariţie a valorii respectivului indicator. 

De exemplu, se consideră procedurile:  
P1 – destinată calculului sumei pătratelor elementelor unui masiv 

unidimensional al cărui text sursă este: 
 

int sume(int x[],int n) 
{ 
 int S; 
 S=0; 
 for(int j=0; j<n; j++)
  S=S+x[j]*x[j]; 
 return S; 
} 

 
P2 – destinată calculului produsului scalar a elementelor a două 

masive unidimensionale al cărui text sursă este: 
 

int prod_sc(int x[],int y[],int n)
{ 
 int S; 
 S=0; 
 for(int j=0;j<n;j++) 
  S=S+x[j]*y[j]; 
 return S; 
} 

 
P3 – alegerea minimului dintre trei elemente întregi al cărui text sursă 

este: 
 

int min(int a,int b,int c)

{ 

 int min; 
 min=a; 

 if(min>b) 

  min=b; 
 if(min>c) 

  min=c; 

 return min; 
} 

 
P4 – alegerea maximului dintre trei elemente întregi al cărui text 

sursă este: 



 
int max(int a,int b,int c)
{ 
 int max; 
 max=a; 
 if(max<b) 
  max=b; 
 if(max<c) 
  max=c; 
 return max; 
} 

 
Textele sursă ale celor patru proceduri conduc la obţinerea 

frecvenţelor fij şi gij din tabelele nr. 22.1 şi nr. 22.2. 
 

Tabelul nr. 22.1 Frecvenţele de apariţie a cuvintelor cheie în procedurile  
P1, P2, P3 şi P4 

 
Frecvenţe de apariţie Cuvinte cheie 

P1 P2 P3 P4 

int 5 6 5 5 
} 1 1 1 1 
} 1 1 1 1 
( 2 2 3 3 
) 2 2 3 3 
= 3 3 3 3 
+ 1 1 0 0 
- 0 0 0 0 
[ 3 4 0 0 
] 3 4 0 0 
; 6 6 5 5 

++ 1 1 0 0 
return 1 1 1 1 

-- 0 0 0 0 
for 1 1 0 0 
< 0 0 0 2 
> 0 0 2 0 
if 0 0 2 2 
, 1 2 2 2 
* 1 1 0 0 

 



 
Tabelul nr. 22.2 Frecvenţele de apariţie a cuvintelor nespecifice din 

procedurile P1, P2, P3 şi P4 
 
Frecvenţe de apariţie Cuvinte nespecifice 

P1 P2 P3 P4 

sume 1 0 0 0 
x 3 2 0 0 
n 2 2 0 0 
S 5 5 0 0 
0 2 2 0 0 

prod_sc 0 1 0 0 
y 0 2 0 0 

min 0 0 8 0 
a 0 0 2 2 
b 0 0 3 3 
c 0 0 3 3 

max 0 0 0 8 
 
Se studiază ortogonalitatea între P1 şi P2 şi se obţine: 
 

I = I1 * I2 = 0,8 * 0,7916 = 0,6(3) (22.14) 
 

şi între P3 şi P4 şi se obţine: 
 

I = 0,8(3) * 0,9 = 0,75 (22.15) 
 
Din aceste două comparaţii rezultă că gradele de ortogonalitate dintre 

P1 şi P2, respectiv dintre P3 şi P4 sunt foarte scăzute. 
 Se studiază ortogonalitatea între P1 şi P3 şi se obţine: 
 

I = I1 * I2 = 0,68(3) * 0,6916 = 0,4769 (22.16) 
 

şi între P2 şi P4 şi se obţine: 
 

I = 0,75 * 0,6875 = 0,515   (22.17) 
 
Din aceste două comparaţii rezultă că gradele de ortogonalitate dintre 

P1 şi P3, respectiv dintre P2 şi P4 sunt ridicate. 
 
 
22.3 Structura software pentru analiza calitativă a noilor 

elemente incluse în baze de date 
 
Aplicaţiile informatice complexe includ module program intercorelate 

şi fişiere independente sau interdependente. În cazul folosirii unor SGBD-uri 
aplicaţiile informatice includ texte sursă de bază, structuri generate şi date 
care fac obiectul prelucrărilor precum şi date necesare accelerării proceselor 
de selecţie şi de regăsire. 

Este important să se gestioneze redundanţa în bazele de date mai 
ales atunci când se impune ca textele stocate să fie diferite între ele. 



De exemplu, se consideră mulţimea ofertelor pentru obţinerea de 
fonduri de finanţare şi se impune ca între oferte sa existe diferenţe 
semnificative, în sensul nedepunerii aceleiaşi oferte pentru două licitaţii sau 
în sensul depunerii de oferte asemănătoare în cadrul aceluiaşi program. 

De asemenea, tezele de doctorat, lucrările de licenţă, articolele şi 
cărţile prezentate de autori pentru concursuri trebuie să fie diferite unele de 
celelalte. 

În acest sens, este necesară construirea unui produs software care 
măsoară gradul de ortogonalitate în cadrul unui fişier sau a unei baze de 
date precum şi dintre fişiere, respectiv, baze de date.  

Determinarea printr-o aplicaţie software a valorilor caracteristicilor de 
calitate şi indicatorilor de ortogonalitate a entităţilor proiect presupun 
derularea următoarelor activităţi: 

- definirea obiectivului aplicaţiei prin stabilirea rezultatelor necesare 
fundamentării actului decizional; 

- stabilirea inputurilor prin studiul sistemului caracteristicilor de 
calitate şi a modelelor asociate metricilor de ortogonalitate a 
proiectelor; 

- construirea arhitecturii sistemului prin analiza inputurilor şi a 
corelaţiilor dintre acestea; 

- culegerea, normalizarea şi sistematizarea datelor conform 
cerinţelor metricilor; 

- implementarea sistemului de metrici; 
- proiectarea interfeţei utilizator în asistarea procesului de stabilire 

a ortogonalităţii bazei de proiecte; 
- testarea sistemului de metrici, urmărindu-se cu precădere 

comportamentul produsului software în cazurile extreme. 
În [Popa02] este prezentată arhitectura şi funcţiile produsului Cloning 

Analysis Software – CAS. Această aplicaţie implementează metricile ale 
caracteristicilor de bază pentru texte şi date organizate în masive 
bidimensionale.  

Aplicaţia solicită utilizatorului date privind: 
- fişierele de lucru – trebuie să se specifice numărul şi numele 

fişierelor care se analizează din punctul de vedere al 
ortogonalităţii; 

- vocabularul utilizator – trebuie să se furnizeze dimensiunea şi 
conţinutul unui vocabular utilizat în modele asociate metricilor; 
vocabularul utilizator este stocat pe disc într-un fişier; 

- devizele de cheltuieli – există trei modalităţi în care devizele de 
cheltuieli asociate proiectelor sunt încărcate în aplicaţie: 
 completarea formularului în care trebuie să se specifice: 

structura devizului ca număr de linii şi coloane, denumirile 
categoriilor de cheltuieli şi valorile asociate; 

 completarea formularelor asociate devizelor cu structură 
predefinită; devizul are o structură impusă, iar utilizatorul 
trebuie să furnizeze valorile asociate categoriilor de cheltuieli; 

 încărcarea devizelor asociate ofertelor dintr-o bază de proiecte; 
au o structură impusă, iar valorile sunt completate de 
ofertanţi; aceste devize sunt stocate în fişiere. 

- fişiere din anexe – proiectele TIC se concretizează în aplicaţii 
informatice; se analizează ortogonalitatea aplicaţiilor dezvoltate 



prin analiza codului sursă; sunt definite şi calculate metrici ale 
programelor sursă. 

În continuare, se prezintă o serie de metode definite în clasa de 
obiecte OrtoMetric dezvoltate în vedere implementării metricilor de evaluare 
a similarităţii entităţilor text. Clasa OrtoMetric are următoarea definiţie: 

 
class OrtoMetric{ 
public: 
 unsigned char NrFis; 
 char **F; 
 OrtoMetric(unsigned char); 
 //[1] Grad de asemanare al fisierelor dupa lungimea lor 
 double OrtoLength(); 
 //[2] Grad de asemanare al fisierelor dupa caracterele 
      // alfabetice 
 double OrtoCAlfa(); 
 //[3] Grad de asemanare al fisierelor dupa vocabular definite 
      // utilizator 
 double OrtoUserVoc(); 
 //[4] Grad de asemanare al fisierelor dupa vocabularul acestora  
 double OrtoFisVoc(); 
 //[5] Grad de asemanare al fisierelor dupa matricea de 
      // precedenta a cuvintelor 
 double OrtoMatVoc(); 
}; 

 
Metodele implementate utilizează structuri de date externe, respectiv 

fişiere, pentru determinarea indicatorilor intermediari şi structurarea 
variabilelor de intrare în modelele asociate metricilor. 

Constructorul clasei OrtoMetric are următorul conţinut: 
 

OrtoMetric::OrtoMetric(unsigned char n){ 
 NrFis=n; 
 F=new char*[NrFis]; 
 for(int i=0; i<NrFis; i++) 
 { 
  char DenFis[30]; 
  cout<<"Denumirea fisierului "<<i+1<<":"; 
  cin>>DenFis; 
  F[i]=new char[strlen(DenFis)]; 
  strcpy(F[i],DenFis); 
 } 
} 

 
Se foloseşte o structură de date dinamică pentru stocarea denumirilor 

de fişiere supuse analizei de similaritate pe baza indicatorilor implementaţi. 
Determinarea similarităţii textelor din punctul de vedere al lungimii 

fişierelor în care acestea sunt stocate este implementată cu ajutorul 
metodei double OrtoMetric::OrtoLength().  

Fişierul GrPartLg.txt memorează gradele de asemănare între fişierele 
lotului introdus prin analiza în pereche. Indicatorul final se determină ca 
medie geometrică a gradelor de asemănare parţiale. 

Codul sursă al metode OrtoLength() este: 
 

double OrtoMetric::OrtoLength(){ 
 unsigned char i,j; 
 FILE *f,*g,*h; 



 float gr; 
 h=fopen("GrPartLg.txt","w+"); 
 for(i=0; i<NrFis; i++){ 
   for(j=0; j<NrFis; j++){ 
    f=fopen(F[i],"r");    
    g=fopen(F[j],"r"); 
    if(f&&g){ 
     fseek(f,0,SEEK_END); 
     fseek(g,0,SEEK_END); 
           
     if(ftell(f)<ftell(g)){ 
      gr=(float)ftell(f)/ftell(g); 
      fprintf(h,"%5.3f ",gr); 
     } 
     else{ 
      gr=(float)ftell(g)/ftell(f); 
      fprintf(h,"%5.3f ",gr); 
     } 
    } 
    else 
     if(!f) 
      cout<<"Fisierul "<<F[i]<<" nu se 
deschide!"<<endl; 
     else 
      cout<<"Fisierul "<<F[j]<<" nu se 
deschide!"<<endl; 
    fclose(f); 
    fclose(g); 
   } 
   fprintf(h,"\n"); 
 } 
 
 //DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE 
 fseek(h,0,SEEK_SET); 
 long double produs=1; 
 unsigned int NrComp=0; 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   fscanf(h,"%f",&gr); 
   if(i<j){ 
    if(gr){ 
     produs*=gr; 
     NrComp++; 
    } 
   } 
  } 
 } 
 fclose(h); 
 return pow(produs,1./NrComp); 
} 

 
Indicatorul de asemănare al fişierelor text din punctul de vedere al 

caracterelor alfabetice conţinute este implementat cu ajutorul metodei 
double OrtoMetric::OrtoCAlfa() al cărei cod sursă C++ este: 

 
double OrtoMetric::OrtoCAlfa(){ 
 unsigned char i,j,k; 
 FILE *f,*g,*h; 
 float gr; 
 h=fopen("GrPartAlfa.txt","w+"); 



 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   f=fopen(F[i],"r");    
   g=fopen(F[j],"r"); 
   if(f&&g){ 
    unsigned int contor1m[26],contor2m[26],
contor1M[26],contor2M[26]; 
    char c; 
    for(k=0; k<26; k++){ 
     contor1m[k]=0; 
     contor2m[k]=0; 
     contor1M[k]=0; 
     contor2M[k]=0; 
    } 
 
    //citire caractere alfabetice din primul fisier 
    fscanf(f,"%c",&c); 
    while(!feof(f)){ 
     if(c==13) 
      fscanf(f,"\n"); 
     else 
     { 
      if(c>=65&&c<=90) 
       contor1M[c-'A']++; 
      else 
      { 
       if(c>=97&&c<=122) 
        contor1m[c-'a']++; 
      } 
     } 
     fscanf(f,"%c",&c); 
    } 
 
    //citire caractere alfabetice din al doilea 
                        // fisier 
    fscanf(g,"%c",&c); 
    while(!feof(g)) 
    { 
     if(c==13) 
      fscanf(g,"\n"); 
     else 
     { 
      if(c>=65&&c<=90) 
       contor2M[c-'A']++; 
      else 
      { 
       if(c>=97&&c<=122) 
        contor2m[c-'a']++; 
      } 
     } 
     fscanf(g,"%c",&c); 
    } 
 
    int nca=0; 
    for(k=0; k<26; k++){ 
     if(contor1m[k]==contor2m[k]) 
      nca++; 
     if(contor1M[k]==contor2M[k]) 
      nca++; 
    } 
 



    float gr; 
    gr=(float)nca/52; 
    fprintf(h,"%5.3f ",gr); 
   } 
   else 
    if(!f) 
     cout<<"Fisierul "<<F[i]<<" nu se 
deschide!"<<endl; 
    else 
     cout<<"Fisierul "<<F[j]<<" nu se 
deschide!"<<endl; 
   fclose(f); 
   fclose(g); 
  } 
  fprintf(h,"\n"); 
 } 
 
 //DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE 
 fseek(h,0,SEEK_SET); 
 long double produs=1; 
 unsigned int NrComp=0; 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   fscanf(h,"%f",&gr); 
   if(i<j){ 
    if(gr){ 
     produs*=gr; 
     NrComp++; 
    } 
   } 
  } 
 } 
 fclose(h); 
 return pow(produs,1./NrComp); 
} 

 
Fişierul GrPartAlfa.txt este utilizat pentru stocarea gradelor de 

asemănare parţiale. Fişierele sunt analizate în pereche pentru determinarea 
gradului de asemănare parţial, iar indicatorul sintetic se obţine prin 
determinarea mediei geometrice a indicatorilor parţiali. 

Metoda double OrtoMetric::OrtoUserVoc() implementează indicatorul 
de asemănare al textelor în raport de un vocabular definit de utilizator. 
Conţinutul metodei este: 

 
double OrtoMetric::OrtoUserVoc(){ 
 unsigned char i,j,k; 
 FILE *f,*g,*h; 
 FILE *f1,*g1,*h1; 
 float gr; 
 struct FA{ 
  char cuv[30]; 
  unsigned int fr; 
 }; 
 
 int opt=1; 
 FA str; 
 h1=fopen("UserVoc.dat","wb+"); 
 while(opt){ 
  cout<<"Introduceti cuvant vocabular:"; 
  cin>>str.cuv; 



  str.fr=0; 
  fwrite(&str,sizeof(FA),1,h1); 
  cout<<"Continuati?(0/1) "; 
  cin>>opt; 
 } 
 
 h=fopen("GrPartUserVoc.txt","w+"); 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   f=fopen(F[i],"r");    
   g=fopen(F[j],"r"); 
   if(f&&g){ 
    f1=fopen("FrecvF.dat","wb+"); 
    g1=fopen("FrecvG.dat","wb+"); 
    fseek(h1,0,SEEK_SET); 
    fread(&str,sizeof(str),1,h1); 
    int nrc=0; 
    while(!feof(h1)){ 
     nrc++; 
     fwrite(&str,sizeof(str),1,f1); 
     fwrite(&str,sizeof(str),1,g1); 
     fread(&str,sizeof(str),1,h1); 
    } 
 
    //DETERMINARE FRECVENTE DE APARITIE PENTRU 
                        // PRIMUL FISIER 
    char CuvF[30]; 
    char size=sizeof(FA); 
    fseek(f1,0,SEEK_END); 
    long int dim=ftell(f1)/size; 
 
    fscanf(f,"%s",CuvF); 
    while(!feof(f)){ 
     fseek(f1,0,SEEK_SET);    
  
     for(k=1;k<=dim;k++){ 
      fread(&str,sizeof(FA),1,f1); 
      if(strcmp(CuvF,str.cuv)==0){ 
       str.fr++;    
    
       fseek(f1,-size,SEEK_CUR); 
       fwrite(&str,sizeof(FA),1,f1); 
      }    
     } 
     fscanf(f,"%s",CuvF); 
    } 
 
    //DETERMINARE FRECVENTE DE APARITIE PENTRU  
                        //AL DOILEA FISIER 
    fseek(g1,0,SEEK_END); 
    dim=ftell(g1)/size; 
 
    fscanf(g,"%s",CuvF); 
    while(!feof(g)){ 
     fseek(g1,0,SEEK_SET);     
     for(k=1;k<=dim;k++){ 
      fread(&str,sizeof(FA),1,g1); 
      if(strcmp(CuvF,str.cuv)==0){ 
       str.fr++; 
       char size=sizeof(FA); 
       fseek(g1,-size,SEEK_CUR); 



       fwrite(&str,sizeof(FA),1,g1); 
      }       
     } 
     fscanf(g,"%s",CuvF); 
    } 
     
    int nfa=0; 
    fseek(f1,0,SEEK_SET); 
    fseek(g1,0,SEEK_SET); 
    FA strf,strg; 
     
    for(k=1;k<=dim;k++){ 
     fread(&strf,sizeof(FA),1,f1); 
     fread(&strg,sizeof(FA),1,g1); 
 
     if(strf.fr==strg.fr){ 
      if(strf.fr) nfa++; 
      else nrc--; 
     } 
    } 
 
    float gr; 
    gr=(float)nfa/nrc; 
    fprintf(h,"%5.3f ",gr); 
 
    fclose(f1); 
    fclose(g1); 
   } 
   else 
    if(!f) 
     cout<<"Fisierul "<<F[i]<<" nu se 
deschide!"<<endl; 
    else 
     cout<<"Fisierul "<<F[j]<<" nu se 
deschide!"<<endl; 
   fclose(f); 
   fclose(g); 
  } 
  fprintf(h,"\n"); 
 } 
 fclose(h1); 
 
 //DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE 
 fseek(h,0,SEEK_SET); 
 long double produs=1; 
 unsigned int NrComp=0; 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   fscanf(h,"%f",&gr); 
   if(i<j){ 
    if(gr){ 
     produs*=gr; 
     NrComp++; 
    } 
   } 
  } 
 } 
 fclose(h); 
 return pow(produs,1./NrComp); 
 
} 



 
Analiza asemănării fişierelor din lotul de fişiere este realizată şi din 

punctul de vedere al vocabularelor acestora. Metoda care implementează 
această metrică de asemănare este double OrtoMetric::OrtoFisVoc(). 

 
double OrtoMetric::OrtoFisVoc(){ 
 unsigned char i,j,k; 
 FILE *f,*g,*h; 
 FILE *f1,*g1; 
 float gr; 
 struct FA{ 
  char cuv[30]; 
  unsigned int fr; 
 }; 
 
 h=fopen("GrPartFisVoc.txt","w+"); 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   f=fopen(F[i],"r");    
   g=fopen(F[j],"r"); 
   if(f&&g){ 
    f1=fopen("FrecvF.dat","wb+"); 
    g1=fopen("FrecvG.dat","wb+"); 
    FA str; 
 
    //DETERMINARE FRECVENTE DE APARITIE PENTRU 
                        // PRIMUL FISIER 
    char CuvF[30]; 
    char size=sizeof(FA); 
    long int dim; 
 
    fscanf(f,"%s",CuvF); 
    while(!feof(f)){ 
     fseek(f1,0,SEEK_END); 
     dim=ftell(f1)/size; 
 
     fseek(f1,0,SEEK_SET); 
     char vb=0; 
     for(k=1;k<=dim&&(!vb);k++){ 
      fread(&str,sizeof(FA),1,f1); 
      if(strcmp(CuvF,str.cuv)==0){ 
       str.fr++;    
    
       fseek(f1,-size,SEEK_CUR); 
       fwrite(&str,sizeof(FA),1,f1); 
       vb=1; 
      }    
     } 
     if(!vb){ 
      str.fr=1; 
      strcpy(str.cuv,CuvF); 
      fseek(f1,0,SEEK_END); 
      fwrite(&str,sizeof(str),1,f1); 
     } 
     fscanf(f,"%s",CuvF); 
    } 
 
    //DETERMINARE FRECVENTE DE APARITIE PENTRU  
                        //AL DOILEA FISIER 
    fscanf(g,"%s",CuvF); 



    while(!feof(g)){ 
     fseek(g1,0,SEEK_END); 
     dim=ftell(g1)/size; 
 
     fseek(g1,0,SEEK_SET); 
     char vb=0; 
     for(k=1;k<=dim&&(!vb);k++){ 
      fread(&str,sizeof(FA),1,g1); 
      if(strcmp(CuvF,str.cuv)==0){ 
       str.fr++; 
       char size=sizeof(FA); 
       fseek(g1,-size,SEEK_CUR); 
       fwrite(&str,sizeof(FA),1,g1); 
       vb=1; 
      }       
     } 
     if(!vb){ 
      str.fr=1; 
      strcpy(str.cuv,CuvF); 
      fseek(g1,0,SEEK_END); 
      fwrite(&str,sizeof(str),1,g1); 
     } 
     fscanf(g,"%s",CuvF); 
    } 
     
    unsigned int nci=0,ncvf=0; 
    fseek(f1,0,SEEK_END); 
    dim=ftell(f1)/size; 
    fseek(g1,0,SEEK_END); 
    long int dim1=ftell(g1)/size; 
    FA strf,strg; 
    fseek(f1,0,SEEK_SET);     
 
    for(k=1;k<=dim;k++){ 
     fread(&strf,sizeof(FA),1,f1); 
 
     fseek(g1,0,SEEK_SET); 
     for(int k1=1;k1<=dim1;k1++){  
      fread(&strg,sizeof(FA),1,g1); 
 
      if(strcmp(strf.cuv,strg.cuv)==0){ 
       nci++; 
       if(strf.fr==strg.fr) ncvf++; 
      } 
     } 
    } 
 
    float gr; 
    gr=(float)ncvf/(dim+dim1-nci); 
    fprintf(h,"%5.3f ",gr); 
 
    fclose(f1); 
    fclose(g1); 
   } 
   else 
    if(!f) 
     cout<<"Fisierul "<<F[i]<<" nu se 
deschide!"<<endl; 
    else 
     cout<<"Fisierul "<<F[j]<<" nu se 
deschide!"<<endl; 



   fclose(f); 
   fclose(g); 
  } 
  fprintf(h,"\n"); 
 } 
 
 //DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE 
 fseek(h,0,SEEK_SET); 
 long double produs=1; 
 unsigned int NrComp=0; 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   fscanf(h,"%f",&gr); 
   if(i<j){ 
    if(gr){ 
     produs*=gr; 
     NrComp++; 
    } 
   } 
  } 
 } 
 fclose(h); 
 return pow(produs,1./NrComp); 
 
} 

 
Metoda double OrtoMetric::OrtoMatVoc() implementează metrica de 

asemănare a fişierelor ce conţin texte privind poziţia cuvintelor în cadrul 
acestora. Codul sursă C++ al metodei este descris în continuare: 

 
double OrtoMetric::OrtoMatVoc(){ 
 unsigned char i,j,k,l; 
 FILE *f,*g,*h; 
 FILE *f1,*g1,*f2,*g2; 
 float gr; 
 struct FA{ 
  char cuv[30]; 
  unsigned int *fr; 
 }; 
 
 h=fopen("GrPartMatVoc.txt","w+"); 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   f=fopen(F[i],"r");    
   g=fopen(F[j],"r"); 
   if(f&&g){ 
    f1=fopen("VocF.txt","w+"); 
    g1=fopen("VocG.txt","w+"); 
 
    f2=fopen("CuvMatF.txt","w+"); 
    g2=fopen("CuvMatG.txt","w+"); 
    FA str; 
 
    //CONSTRUIRE VOCABULAR PRIMUL FISIER 
    char CuvF[30],CuvD[30]; 
    unsigned int nrcF=0; 
    char size=sizeof(CuvF); 
 
    fscanf(f,"%s",CuvF); 
    while(!feof(f)){ 



 
     fseek(f1,0,SEEK_SET); 
     char vb=0; 
     fscanf(f1,"%s",str.cuv); 
     while(!feof(f1)){     
  
      if(strcmp(CuvF,str.cuv)==0) vb=1; 
      fscanf(f1,"%s",str.cuv); 
     } 
     if(!vb){ 
      fprintf(f1,"%s ",CuvF); 
      nrcF++; 
     } 
     fscanf(f,"%s",CuvF); 
    } 
 
    str.fr=new unsigned int[nrcF]; 
    fseek(f1,0,SEEK_SET); 
 
    fscanf(f1,"%s",str.cuv); 
    unsigned int nri=0; 
    while(!feof(f1)){ 
     nri++; 
     for(l=0;l<nrcF;l++) str.fr[l]=0; 
      
     fseek(f,0,SEEK_SET); 
     fscanf(f,"%s",CuvF); 
     while(!feof(f)){ 
     if(strcmp(str.cuv,CuvF)==0){ 
     fscanf(f,"%s",CuvF);    
     if(!feof(f)){ 
      fseek(f1,0,SEEK_SET); 
      for(unsigned int l=0;l<nrcF;l++){ 
       fscanf(f1,"%s",CuvD); 
      if(strcmp(CuvF,CuvD)==0)  
                                         str.fr[l]++; 
      } 
     } 
     } 
     else fscanf(f,"%s",CuvF); 
     } 
 
     //SCRIEREA IN FISIERUL TEXT A LINIEI k CU 
                              // FRECVENTELE PERECHILOR 
     fprintf(f2,"%s ",str.cuv); 
     for(int unsigned l=0;l<nrcF;l++) 
      fprintf(f2,"%i ",str.fr[l]); 
     fprintf(f2,"\n"); 
 
     fseek(f1,0,SEEK_SET); 
     for(l=0;l<=nri;l++)   
                                     fscanf(f1,"%s",str.cuv); 
    } 
 
    //CONSTRUIRE VOCABULAR AL DOILEA FISIER 
    unsigned int nrcG=0; 
 
    fscanf(g,"%s",CuvF); 
    while(!feof(g)){ 
 
     fseek(g1,0,SEEK_SET); 



     char vb=0; 
     fscanf(g1,"%s",str.cuv); 
     while(!feof(g1)){     
      if(strcmp(CuvF,str.cuv)==0) vb=1; 
      fscanf(g1,"%s",str.cuv); 
     } 
     if(!vb){ 
      fprintf(g1,"%s ",CuvF); 
      nrcG++; 
     } 
     fscanf(g,"%s",CuvF); 
    } 
 
    str.fr=new unsigned int[nrcG]; 
    fseek(g1,0,SEEK_SET); 
 
    fscanf(g1,"%s",str.cuv); 
    nri=0; 
    while(!feof(g1)){ 
     nri++; 
     for(l=0;l<nrcF;l++) str.fr[l]=0; 
      
     fseek(g,0,SEEK_SET); 
     fscanf(g,"%s",CuvF); 
     while(!feof(g)){ 
     if(strcmp(str.cuv,CuvF)==0){ 
     fscanf(g,"%s",CuvF);    
     if(!feof(g)){ 
      fseek(g1,0,SEEK_SET); 
      for(unsigned int l=0;l<nrcF;l++){ 
      fscanf(g1,"%s",CuvD); 
      if(strcmp(CuvF,CuvD)==0)  
                                         str.fr[l]++; 
      } 
     } 
     } 
      else fscanf(g,"%s",CuvF); 
     } 
 
     //SCRIEREA IN FISIERUL TEXT A LINIEI k CU 
                              // FRECVENTELE PERECHILOR 
     fprintf(g2,"%s ",str.cuv); 
     for(unsigned int l=0;l<nrcG;l++) 
      fprintf(g2,"%i ",str.fr[l]); 
     fprintf(g2,"\n"); 
 
     fseek(g1,0,SEEK_SET); 
     for(l=0;l<=nri;l++)   
                                  fscanf(g1,"%s",str.cuv); 
    } 
 
 
    //DETERMINARE COMPONENTE GRAD DE ASEMANARE 
                        // PENTRU FISIERELE F SI G 
    unsigned int nfm=0,ntcc=0; 
    FA str1; 
    str.fr=new unsigned int[nrcF]; 
    str1.fr=new unsigned int[nrcG]; 
    unsigned int frc; 
 
    for(k=0;k<nrcF;k++){     



     fseek(f2,0,SEEK_SET); 
     for(l=0;l<k;l++){ 
      fscanf(f2,"%s",CuvF); 
      for(unsigned int m=0;m<nrcG;m++){ 
       fscanf(f2,"%i",&frc); 
       str1.fr[m]=frc; 
      } 
     } 
     fscanf(f2,"%s",CuvF); 
     strcpy(str.cuv,CuvF); 
     for(l=0;l<nrcF;l++){ 
      fscanf(f2,"%i",&frc); 
      str.fr[l]=frc; 
     } 
      
     fseek(g2,0,SEEK_SET); 
     fscanf(g2,"%s",CuvD); 
     char vb=0; 
     while(!feof(g2)&&!vb){    
   
      if(strcmp(CuvF,CuvD)==0){ 
       ntcc++; 
       strcpy(str1.cuv,CuvD); 
       for(l=0;l<nrcG;l++){ 
        fscanf(g2,"%i",&frc); 
        str1.fr[l]=frc; 
       } 
       vb=1; 
      } 
      else{ 
       for(l=0;l<nrcG;l++){ 
        fscanf(g2,"%i",&frc); 
        str1.fr[l]=frc; 
       } 
      } 
      fscanf(g2,"%s",CuvD); 
     } 
 
     if(vb){ 
      unsigned int pozF=0;   
    
      fseek(f2,0,SEEK_SET); 
      fscanf(f2,"%s",CuvF); 
      while(!feof(f2)){ 
       fseek(g2,0,SEEK_SET); 
       fscanf(g2,"%s",CuvD); 
       unsigned int pozG=0; 
       while(!feof(g2)){ 
       if(strcmp(CuvF,CuvD)==0){ 
          if(str.fr[pozF]==str1.fr[pozG]) 
                                             nfm++; 
        } 
        for(l=0;l<nrcG;l++){ 
        fscanf(g2,"%i",&frc); 
         str1.fr[l]=frc; 
        } 
        fscanf(g2,"%s",CuvD); 
        pozG++; 
       } 
       for(l=0;l<nrcG;l++){ 
        fscanf(f2,"%i",&frc); 



        str.fr[l]=frc; 
       } 
       fscanf(f2,"%s",CuvF); 
       pozF++; 
      } 
     } 
    } 
 
    //DETERMINAREA GRADULUI DE ASEMANARE 
    float gr; 
    gr=(float)nfm/(ntcc*ntcc); 
    fprintf(h,"%5.3f ",gr); 
 
    fclose(f1); 
    fclose(g1); 
 
    fclose(f2); 
    fclose(g2); 
   } 
   else 
    if(!f) 
     cout<<"Fisierul "<<F[i]<<" nu se 
deschide!"<<endl; 
    else 
     cout<<"Fisierul "<<F[j]<<" nu se 
deschide!"<<endl; 
   fclose(f); 
   fclose(g); 
  } 
  fprintf(h,"\n"); 
 } 
  
 //DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE 
 fseek(h,0,SEEK_SET); 
 long double produs=1; 
 unsigned int NrComp=0; 
 for(i=0; i<NrFis; i++){ 
  for(j=0; j<NrFis; j++){ 
   fscanf(h,"%f",&gr); 
   if(i<j){ 
    produs*=gr; 
    NrComp++; 
   } 
  } 
 } 
 fclose(h); 
 return pow(produs,1./NrComp); 
} 

 
Pentru reprezentare internă a textului entităţilor software, se propun 

mai multe variante, [Sand05]: 
- reprezentarea cu ajutorul a doi vectori – pentru fiecare entitate se 

asociază un vector VD, cu nvd elemente, care memorează toate 
cuvintele distincte din şi un vector VF, cu nvd elemente, care 
reţine pe fiecare poziţie k, k = 1, 2, …, nvd, numărul de apariţii 
ale fiecărui cuvânt din VD; 

- reprezentare prin utilizarea de pointeri – se utilizează o listă 
simplu înlănţuită care are ca înregistrare în nod perechea (vdi, 



vfi); unde vdi este un element din vectorul VD, iar vfi este un 
element din vectorul VF; 

- reprezentarea prin arbore de căutare – cheia din arbore este dată 
de un cuvânt; ca informaţie utilă, nodul are ataşat numărul de 
apariţii ale cuvântului în titlul proiectului; 

- reprezentarea prin tabele gestionate de un SGBD – se defineşte o 
tabelă destinată memorării textelor entităţilor software, în care 
cheia primară este un cod unic de identificare asociat fiecărei 
entităţi; aceasta devine cheie externă într-o tabelă, care conţine 
coloanele: nr_proiect, cuvânt şi apariţii; în această tabelă se 
stochează cuvintele, împreună cu numărul de apariţii.  

Analiza ortogonalităţii programelor sursă din anexele proiectelor din 
baza de proiecte presupune construirea unei matrice ale indicatorilor de 
ortogonalitate agregaţi pentru perechile de programe sursă (PRGi, PRGj). 
Indicatorul agregat de ortogonalitate asociat perechii (PRGi, PRGj) se obţine 
prin determinarea ortogonalităţii următoarelor metrici primare, [Popa02]: 

- lungimea programelor – presupune determinarea mărimii pe disc 
a fişierelor în care sunt stocate codurile sursă ale aplicaţiilor din 
baza de proiecte; 

- frecvenţele de apariţie a caracterelor alfabetice – constă în 
încărcarea elementelor masivelor unidimensionale cu numărul de 
apariţii al caracterelor utilizate în construirea programelor; 

- vocabularul utilizator – utilizatorul introduce cuvinte, rezervate 
sau definite, pe care le urmăreşte în programele analizate din 
punctul de vedere al frecvenţelor de apariţie; 

- vocabularul programelor – se identifică cuvintele diferite din 
textele sursă şi se determină frecvenţa lor de apariţie; 

- vocabularul comun – constă în identificarea cuvintelor comune din 
vocabularele textelor sursă şi determinarea frecvenţelor de 
apariţie; 

- structura entităţilor – constă în împărţirea în paragrafe a 
programelor sursă şi determinarea de frecvenţe de apariţie pentru 
fiecare paragraf; 

- variabilele definite – pe baza sintaxei limbajului se identifică 
variabilele utilizate şi se determină frecvenţele de apariţie; 

- matrice de precedenţă a variabilelor – presupune specificarea 
ordinii de folosire a variabilelor printr-o structură de tip masiv 
bidimensional; compararea valorilor din matricea de precedenţă 
conduce la determinarea indicatorului de ortogonalitate 
corespunzător acestui criteriu; 

- poziţia variabilelor – presupune identificarea variabilelor şi 
reţinerea poziţiilor acestora în funcţie de instrucţiunile asociate în 
utilizare.  

Modul în care este proiectat permite includerea de noi indicatori şi 
implementarea de noi mecanisme de analiză comparata a datelor. 

 
 


