22. UTILIZAREA STRUCTURILOR DE DATE IN
CLONAREA INFORMATICA

22.1 Conceptul de ortogonalitate a elementelor

Indiferent de forma de existentda a produselor si serviciilor in
domeniul informaticii, evidentierea si gestionarea procesului de clonare
reprezinta o activitate importanta intrucat limitarea clonelor creeaza
premise obtinerii de software performant si de atragere de resurse
financiare pentru dezvoltarea productiei si calificarea personalului. In acest
scop, se impune dezvoltarea de instrumente software care sa analizeze
arhitecturi hardware, produse software si baze de date existenteh?ntr—o arie
de utilizare precis delimitata si sa identifice clonele existente. In cazul in
care clonele si procesul de clonare depasesc limitele definite printr-un cadru
legal existent la un moment dat se procedeaza la efectuarea de corectii pe
toate planurile.

Astfel de produse software sunt realizate deja pentru stabilirea
partilor comune din texte redactate cu procesoarele de tip Word si pentru
identificarea clonelor din programe C++ precum si depistarea elementelor
de proportionalitate care genereaza clone in tabele construite prin prelucrari
de tip matriceal. Absenta clonelor este specifica datelor ortogonale.

Doua drepte sunt ortogonale daca unghiul format la intersectia
acestora are cosinusul egal cu zero, cu alte cuvinte cele doua drepte sunt
perpendiculare. Un ansamblu de drepte este ortogonal daca dreptele ce-l
compun sunt perpendiculare doua cate doua.

Doua plane sunt ortogonale daca unghiul format la intersectia lor are
cosinusul egal cu valoarea zero, adica cele doua plane sunt perpendiculare.
Un ansamblu format din mai multe plane este ortogonal daca planele care il
formeaza sunt ortogonale doua cate doua.

Doi vectori sunt ortogonali daca produsul scalar al acestora este nul.

In continuare o datd este reprezentatd uzual ca un numar (125 sau 0
sau -400.72 sau +25.3e-4) sau un sir de caractere ("masina” sau “125” sau
“Cluj-Napoca-20007).

Extinzand, rezulta ca datele D; si D, sunt ortogonale semantic, in
cazul in care continutul informational al acestora, sensul lor, difera intr-o
maniera categorica si semiotic, daca acestea au o formalizare matematica
total diferita.

Ortogonalitatea reprezinta diferenta dintre doua entitati. Daca datele
sunt complet diferite, atunci ele sunt ortogonale. Forma pe care o iau
indicatorii de ortogonalitate este strans legata de tipul si complexitatea
datelor comparate si specificul analizei.

Se considera colectivitatea KOL = {eki, ek, ..., ekn}, avand nek
elementele omogene. Elementele colectivitatii sunt descrise prin intermediul
a nca caracteristici ale colectivitatii, Ch;, Ch,, ..., Chyc.

Pentru un element ek;, ce apartine colectivitatii KOL, nivelurile
caracteristicilor sunt evidentiate de urmatorul tuplu:

ekl- = (VCh,l , VCh,'Z y ey VChi,nca) (221)

unde Vchi este nivelul caracteristicii Chy pentru elementul ek;.

Un element x este ortogonal pe colectivitatea KOL daca si numai
daca:

<Xx, eki>=0 (22.2)

oricare ar fi ek;, element al colectivitatii.

Doua seturi de date sunt ortogonale daca ele nu au nimic in comun.
Elementele ek; si ek; sunt ortogonale daca valorile situate pe pozitiile
similare sunt distincte. Identitatea a doua seturi de date se defineste in mod
contrar ortogonalitatii. Elementele ek; si ek; sunt identice daca au acelasi
volum, iar valorile de pe pozitiile similare sunt egale.

Daca se considera I indicatorul asociat identitatii si O indicatorul
asociat ortogonalitatii elementelor, atunci:

I=1-0 (22.3)

Ortogonalitatea seturilor de date joaca un rol important in
dezvoltarea modelelor cu un nivel ridicat al calitatii. Identificarea unica a
unui element dintr-o colectivitate are loc pe baza conceptului de amprenta.

Amprenta datelor reprezintd o succesiune de caracteristici obiectiv
masurabile. Caracteristicile individualizeaza datele si determina ca in cazul
in care nivelurile lor sunt diferite toate pentru date diferite sau sunt identice
pentru date identice.

In cazul datelor reprezentate ca entitdti text, amprenta se
construieste prin efectuarea sondajului statistic.

Contributia originala la dezvoltarea domeniului D; este rezultatul
activitatii de creatie. Ea vizeaza urmatoarele aspecte [Popa05]:

- introducerea si definirea de concepte noi care completeaza sau

imbunatatesc cadrul conceptual al domeniului;

- dezvoltarea de tehnici si metode noi de analiza prin introducerea
de noi instrumente, sisteme de evaluare, algoritmi de
sistematizare si prelucrare a datelor;

- punerea la punct, completarea sau introducerea de noi
metodologii de descriere a ciclului de viata pentru entitatile
dezvoltate in domeniul D;;

- elaborarea de studii de caz cu un puternic impact asupra lucrului
cu entitati in domeniul D;.

Este aproape imposibil sa se construiasca entitati cu ortogonalitate de
100%. Plusul de valoare este adus pe baza elementelor existente la care se
adauga, se dezvolta sau se corecteaza noi aspecte care prezinta importanta
in domeniu.

Noile entitati cuprind o foarte mare parte din elementele deja
construite. In analiza ortogonalitatii partea cea mai importanta o constituie
identificarea si cuantificarea elementelor cu un ridicat nivel de noutate.

Conceptul de clonare informationala este strans legat de cel al
reutilizarii.

Termenul clonare fisi are originile in cuvantul grecesc klon.
Semnificatia cuvantului este cea de reproducere a sistemelor, produselor
sau informatiei prin constituirea de entitati separate, dar cu acelasi continut.
A clona o entitate ET inseamna a derula procese prin care se genereaza noi
entitati care au acelasi continut si indeplinesc aceleasi functii.

De exemplu, pentru entitatile software, clonarea presupune obtinerea
de noi produse, diferite din punct de vedere sintactic, dar identice din cel al
functiilor indeplinite. In acest caz, procesele de clonare presupun efectuarea
transformarilor [Ivan03]:

inlocuirea cuvintelor cu sinonime; exista operatii care se
implementeaza prin mai multe modalitati, utilizand cuvinte
diferite; in acest caz, procesele de clonare se refera la functiile
entitatii software;

eliminarea secventelor care nu joaca un rol critic; secventele
vizeaza implementarea operatiilor de normalizare, sistematizare,
pregatire apel de subrutine; pentru a asigura caracterul de
generalitate pentru entitatea software dezvoltata, este necesar sa
se efectueze validari; pentru o entitate concreta nu este
obligatoriu ca validarile sa fie implementate;

inlocuirea secventelor de cod cu secvente echivalente; consta in
schimbarea succesiunii pasilor concomitent cu detalierea sau
generalizarea secventelor de cod asociate; procesele de clonare
privesc natura prelucrarilor care, pentru aceleasi intrari, conduc la
obtinerea acelorasi rezultate;

optimizarea subexpresiilor comune; subexpresiile comune sunt
incluse intr-o structura careia i se atribuie un nume generic; in
entitatea software, subexpresiile comune sunt inlocuite cu noua
structura; se modifica doar modul in care subexpresiile sunt
referite;

eliminarea secventelor redundante; nu afecteaza prelucrarile
specificate in algoritm, ci numai modul de reprezentare a
programului sursa ca structura si continut;

concatenarea structurilor repetitive; pentru structurile repetitive
avand acelasi numar de iteratii sau aceeasi conditie de oprire sunt
reunite expresiile care se executa in cadrul acestora; entitatea
software rezultatd este identica sub aspectul prelucrarilor si
functiilor implementate, dar diferita ca structura;

conversia formatului de stocare a datelor; consta in modificarea
structurilor utilizate in stocarea datelor; continutul structurilor este
identic; in schimb, difera modul de organizarea externa a datelor;
schimbarea structurilor de date utilizate; consta in modificarea
modului de organizare interna a datelor; datele si prelucrarile sunt
identice, dar difera modul de reprezentare a lor;

aducerea programelor la o forma comuna; presupune translatarea
in plan matematic a caracteristicilor entitatilor software; scopul
este de a efectua analize comparative pe entitati software, prin
asigurarea omogenitatii reprezentarii acestora;

restructurarea programelor; presupune inventarierea structurilor
implementate 1in entitatea software si stabilirea succesiunii lor;
pentru secvente de structuri, se dezvolta structuri echivalente ca
prelucrari efectuate;

translatarea software; consta in transformarea unei entitati scrisa
intr-un limbaj de programare intr-o entitate dezvoltata cu un alt
limbaj.

Cel mai frecvent, procesele de clonare sunt derulate pe baza operatiei
de copiere a continutului. Copierea entitatilor reprezinta operatia de

duplicare a continutului acestora. In functie de tipului suportului de stocare,
exista mai multe forme de copiere.

22.2 Indicatori ai diferentelor masurate dintre proceduri

Procedurile dintr-un program sunt asemanatoare din urmatoarele
puncte de vedere:
problema pe care o rezolva;
instrumentele folosite;
functiile pe care le realizeaza;
tehnicile de proiectare;
performantele.

Este preferabil sa se construiasca proceduri si biblioteci de proceduri
in scopul reutilizarii acestora pentru a creste productivitatea programatorilor
si pentru a reduce volumul de munca vie incorporata in programele noi care
se elaboreaza. In cazul in care pentru o aceeasi tipologie de prelucrari se
scriu mai multe proceduri, costurile aplicatiei informatice cresc nejustificat.

Pentru a controla continutul textelor sursa din produsele software
elaborate si utilizate in vederea reducerii ponderii componentelor identice
realizate accidental este necesar sa se evalueze permanent ortogonalitatea
procedurilor existente in aplicatiile aflate in uz curent sau in curs de
elaborare.

Astfel, se impune definirea unui sistem de indicatori cu scopul de a
evalua asemanarea existenta intre proceduri.

Se considera doua proceduri P; si P;. Gradul de asemanare intre cele
doua componente ale colectivitatii formata din produsele software
elaborate, se determind ca o medie geometrica intre indicatorii ce
caracterizeaza asemanarea procedurilor in functie de criteriile considerate:

- dimensiune ca numar de instructiuni;

- frecventa de aparitie a caracterelor alfabetice;

- frecventele de aparitie a cuvintelor unui vocabular dat de catre

utilizator;

- frecventele de aparitie a cuvintelor care formeaza cele doua

proceduri;

- frecventele de aparitie a diferitelor tipuri de date;

- complexitatea secventelor program.

Primul indicator J; caracterizeaza asemanarea procedurilor P; si P; din
punctul de vedere al lungimii acestora si se calculeaza ca raport intre
lungimea procedurii P; si lungimea procedurii P; .

min(L;,L;)
TN (224)
max(Li,Lj)
unde:
e [, - lungimea in octeti a procedurii P;;
e L; - lungimea in octeti a procedurii P;;

Aceasta se realizeaza pentru a determina un grad de asemanare
relevant a carui valoare sa fie cuprinsa in intervalul [0; 1].

Al doilea indicator J, are in vedere surprinderea asemanarii dintre
cele doua proceduri P; si P; in functie de frecventele de aparitie a
caracterelor alfabetice.

J, =" 22.5
> NTC (22.3)
unde:
e NTC - reprezintda numarul total de caractere alfabetice (mari si mici);
e nca; - ia una din urmatoarele valori:

e 0, daca pentru caracterul i frecventele de aparitie in cele
doua proceduri sunt diferite;
e 1, daca pentru caracterul i frecventele de aparitie in cele
doua proceduri sunt identice.
Al treilea indicator J; reflecta gradul de asemadnare a celor doua
proceduri in functie de un vocabular furnizat de catre utilizator.

i=1
J, NGV (22.6)

unde:

e NCV - numarul de cuvinte al vocabularului pentru care frecventele de
aparitie in cele doua proceduri nu sunt egale si nule pentru un
cuvant dat;

e NCV; - ia una din urmatoarele valori:

e 0, daca frecventele pentru cuvantul j sunt diferite sau egale,
dar nule;

e 1, daca frecventele pentru cuvantul j sunt identice si diferite
de zero.

Urmatorul indicator, 14, are in vedere criteriul de comparare a
elementelor privind frecventele de aparitie a totalitatii cuvintelor care
compun cele doua proceduri.

P S— (22.7)

unde:
e NTCV - numarul total de cuvinte al celor doua elemente, cuvinte care
sunt distincte;
e ntcv; - ia una din urmatoarele valori:
e 0, daca frecventele pentru cuvantul j sunt diferite sau
cuvantul i nu se regaseste in cealalta procedura;
e 1, daca pentru cuvantul i frecventele sunt identice in cele
doua proceduri.
Al cincilea indicator, Js, pune in evidenta asemadnarea a doua
elemente in functie de structura lor.

_ NESC
> NMES

(22.8)

unde:
e NESC - numarul de elemente structurale comune celor doua proceduri
considerate, respectiv P; si Pj;
e NMES - numarul minim de elemente structurale a celor doua proceduri
P; si PJ'.
Urmatorul indicator, Js, determina gradul de asemanare a
elementelor prin utilizarea unei matrice de precedenta. Acest grad de
asemanare se foloseste pentru analiza gramaticala a elementelor.

_ min(NCI;,NCI;)

_ 22.9
° max(NCI,,NCI) (22.9)

unde:
e NCI; - numarul de cuvinte interschimbabile din procedura P;;
e NCI; - numarul de cuvinte interschimbabile din procedura P;;

Aceasta se realizeaza pentru a determina un grad de asemanare
relevant a carui valoare sa fie cuprinsa in intervalul [0; 1].

Ultimul indicator, J;,, are in vedere determinarea gradului de
asemanare a celor doua elemente din punctul de vedere al complexitatii
acestora.

Gradul de complexitate se determina conform relatiei:

cmplx = n*In(n) (22.10)
unde n reprezinta numarul de operatori ale elementului.

_ min(cmplx;, cmplx;)

_ (22.11)
max(cmplx;, cmplx;)

7

unde cmplx; si cmplx; reprezinta complexitatile celor doua proceduri P; si P;.

Gradul de asemanare a celor doua proceduri,], reprezinta, de fapt, o
sinteza a gradelor de asemanare calculate dupa cele sapte criterii amintite,
realizdnd o omogenizare a acestor indicatori.

J=1 ll[.]i (22.12)

In final, pentru un produs software se determind indicatorul agregat
J, care masoara gradul de asemanare a procedurilor ca medie geometrica
intre gradele de asemanare dintre toate componentele ce formeaza un
produs software, componentele fiind luate doua cate doua.

(22.13)

unde:
e C,? - numéarul de combinatii posibile de proceduri luate doud cate dous;

o J; - valori indicatori calculate pentru fiecare doua proceduri
considerate;
o N, - frecventa de aparitie a valorii respectivului indicator.

De exemplu, se considera procedurile:
P; — destinata calculului sumei patratelor elementelor unui masiv

unidimensional al carui text sursa este:

int sume(int x[],int n)
{
int S;
S=0;
for(int j=0; j<n; j++)
S=S+x[J1*x[i1;
return S;
}

P, - destinata calculului produsului scalar a elementelor a doua
masive unidimensionale al carui text sursa este:

int prod_sc(int x[],int y[],int n)
{
int S;
S=0;
for(int J=0;j<n;j++)
S=S+x[11*yLil;

return S;

}

Ps — alegerea minimului dintre trei elemente intregi al carui text sursa
este:

int min(int a,int b,int ¢)
{
int min;
min=a;
if(min>b)
min=Db;
if(min>c)
min=c;
return min;

}

P, - alegerea maximului dintre trei elemente intregi al carui text
sursa este:

Textele sursa ale celor

int max(int a,int b,int ¢)

{

}

int max;
max=a;
if(max<b)
max=b;
iT(max<c)
max=c;
return max;

patru proceduri

frecventelor fj; si g;; din tabelele nr. 22.1 si nr. 22.2.

conduc

la obtinerea

Tabelul nr. 22.1 Frecventele de aparitie a cuvintelor cheie in procedurile

P11P21P3§iP4

Cuvinte cheie Frecvente de aparitie
P P, Ps P4
int 5 6 5 5
> 1 1 1 1
) 1 1 1 1
(2 2 3 3
) 2 2 3 3
= 3 3 3 3
+ 1 1 0 0
- 0 0 0 0
[3 4 0 0
] 3 4 0 0
; 6 6 5 5
++ 1 1 0 0
return 1 1 1 1
-- 0 0 0 0
for 1 1 0 0
< 0 0 0 2
> 0 0 2 0
if 0 0 2 2
, 1 2 2 2
* 1 1 0 0

Tabelul nr. 22.2 Frecventele de aparitie a cuvintelor nespecifice din
procedurile P;, P>, P; Si Py

Cuvinte nespecifice Frecvente de aparitie
P, P, P3 P,
sume 1 0 0 0
X 3 2 0 0
n 2 2 0 0
S 5 5 0 0
0 2 2 0 0
prod_sc 0 1 0 0
y 0 2 0 0
min 0 0 8 0
a 0 0 2 2
b 0 0 3 3
C 0 0 3 3
max 0 0 0 8

Se studiaza ortogonalitatea intre P; si P, si se obtine:
I=I;*1,=0,8*0,7916 = 0,6(3) (22.14)
si intre P3 si P4 si se obtine:
I1=0,8(3) *0,9=0,75 (22.15)

Din aceste doua comparatii rezulta ca gradele de ortogonalitate dintre
P; si P,, respectiv dintre Ps si P, sunt foarte scazute.
Se studiaza ortogonalitatea intre P; si P3 si se obtine:

I=I,%I,=0,68(3) * 0,6916 = 0,4769 (22.16)
si intre P, si P4 si se obtine:
I=0,75*0,6875 = 0,515 (22.17)

Din aceste doua comparatii rezulta ca gradele de ortogonalitate dintre
P, si P3, respectiv dintre P, si P4 sunt ridicate.

22.3 Structura software pentru analiza calitativa a noilor
elemente incluse in baze de date

Aplicatiile informatice complexe includ module program intercorelate
si fisiere independente sau interdependente. In cazul folosirii unor SGBD-uri
aplicatiile informatice includ texte sursa de baza, structuri generate si date
care fac obiectul prelucrarilor precum si date necesare accelerarii proceselor
de selectie si de regasire.

Este important sa se gestioneze redundanta in bazele de date mai
ales atunci cand se impune ca textele stocate sa fie diferite intre ele.

De exemplu, se considera multimea ofertelor pentru obtinerea de
fonduri de finantare si se impune ca intre oferte sa existe diferente
semnificative, in sensul nedepunerii aceleiasi oferte pentru doua licitatii sau
in sensul depunerii de oferte asemanatoare in cadrul aceluiasi program.

De asemenea, tezele de doctorat, lucrdrile de licenta, articolele si
cartile prezentate de autori pentru concursuri trebuie sa fie diferite unele de
celelalte.

In acest sens, este necesara construirea unui produs software care
masoara gradul de ortogonalitate in cadrul unui fisier sau a unei baze de
date precum si dintre fisiere, respectiv, baze de date.

Determinarea printr-o aplicatie software a valorilor caracteristicilor de
calitate si indicatorilor de ortogonalitate a entitatilor proiect presupun
derularea urmatoarelor activitati:

- definirea obiectivului aplicatiei prin stabilirea rezultatelor necesare

fundamentarii actului decizional;

- stabilirea inputurilor prin studiul sistemului caracteristicilor de
calitate si a modelelor asociate metricilor de ortogonalitate a
proiectelor;

- construirea arhitecturii sistemului prin analiza inputurilor si a
corelatiilor dintre acestea;

- culegerea, normalizarea si sistematizarea datelor conform
cerintelor metricilor;

- implementarea sistemului de metrici;

- proiectarea interfetei utilizator in asistarea procesului de stabilire
a ortogonalitatii bazei de proiecte;

- testarea sistemului de metrici, urmarindu-se cu precadere

_ comportamentul produsului software in cazurile extreme.

In [Popa02] este prezentata arhitectura si functiile produsului Cloning
Analysis Software - CAS. Aceasta aplicatie implementeaza metricile ale
caracteristicilor de baza pentru texte si date organizate in masive
bidimensionale.

Aplicatia solicita utilizatorului date privind:

- fisierele de lucru - trebuie sa se specifice numarul si numele
fisierelor care se analizeaza din punctul de vedere al
ortogonalitatii;

- vocabularul utilizator - trebuie sa se furnizeze dimensiunea si
continutul unui vocabular utilizat in modele asociate metricilor;
vocabularul utilizator este stocat pe disc intr-un fisier;

- devizele de cheltuieli - exista trei modalitati in care devizele de
cheltuieli asociate proiectelor sunt incarcate in aplicatie:

e completarea formularului in care trebuie sa se specifice:
structura devizului ca numar de linii si coloane, denumirile
categoriilor de cheltuieli si valorile asociate;

e completarea formularelor asociate devizelor cu structura
predefinita; devizul are o structura impusa, iar utilizatorul
trebuie sa furnizeze valorile asociate categoriilor de cheltuieli;

e Incarcarea devizelor asociate ofertelor dintr-o baza de proiecte;
au o structura impusa, iar valorile sunt completate de
ofertanti; aceste devize sunt stocate in fisiere.

- fisiere din anexe - proiectele TIC se concretizeaza in aplicatii
informatice; se analizeaza ortogonalitatea aplicatiilor dezvoltate

prin analiza codului sursa; sunt definite si calculate metrici ale
programelor sursa.
In continuare, se prezintd o serie de metode definite in clasa de
obiecte OrtoMetric dezvoltate in vedere implementarii metricilor de evaluare
a similaritatii entitatilor text. Clasa OrtoMetric are urmatoarea definitie:

class OrtoMetric{
public:
unsigned char NrFis;
char **F;
OrtoMetric(unsigned char);
//[1] Grad de asemanare al fisierelor dupa lungimea lor
double OrtoLength();
//[2] Grad de asemanare al fisierelor dupa caracterele
// alfabetice
double OrtoCAlfa();
//[3] Grad de asemanare al fisierelor dupa vocabular definite
// utilizator
double OrtoUserVoc();
//[4] Grad de asemanare al fisierelor dupa vocabularul acestora
double OrtoFisVoc();
//[5] Grad de asemanare al fisierelor dupa matricea de
// precedenta a cuvintelor
double OrtoMatVoc();

};

Metodele implementate utilizeaza structuri de date externe, respectiv
fisiere, pentru determinarea indicatorilor intermediari si structurarea
variabilelor de intrare in modelele asociate metricilor.

Constructorul clasei OrtoMetric are urmatorul continut:

OrtoMetric: :OrtoMetric(unsigned char n){
NrFis=n;
F=new char*[NrFis];
Ffor(int 1=0; iI<NrFis; i++)

{
char DenFis[30];
cout<<"Denumirea Ffisierului "<<i+l<<":";
cin>>DenFis;
FLil=new char[strlen(DenFis)];
strcpy(F[i],DenFis);

}

s

Se foloseste o structura de date dinamica pentru stocarea denumirilor
de fisiere supuse analizei de similaritate pe baza indicatorilor implementati.

Determinarea similaritatii textelor din punctul de vedere al lungimii
fisierelor in care acestea sunt stocate este implementata cu ajutorul
metodei double OrtoMetric::OrtoLength().

Fisierul GrPartLg.txt memoreaza gradele de asemanare intre fisierele
lotului introdus prin analiza in pereche. Indicatorul final se determina ca
medie geometrica a gradelor de asemanare partiale.

Codul sursa al metode OrtoLength() este:

double OrtoMetric::OrtoLength(){
unsigned char i,j;
FILE *F,*g,*h;

float gr;
h=Ffopen(*'GrPartLg.txt","w+");
for(i=0; i<NrFis; i++){
for(J=0; J<NrFis; j++){
f=fopen(F[i],"r");
g=fopen(FLil."r");
if(f&&g){
fseek(F,0,SEEK_END);
fseek(g,0,SEEK_END);

if(ftell(F)<ftell(g)){
gr=(float) ftel 1 (F)/ftell(g);
fprintf(h,"%5.3F ",gr);

else{
gr=(float)ftell(g)/Ttell(F);
fprintf(h,"%5.3F ",gr);

}
}
else
if(1f)
cout<<Fisierul "<<F[i]<<" nu se
deschide!"'<<endl;
else
cout<<"Fisierul "<<F[jJ]<<" nu se
deschide!"'<<endl;
fclose(f);
fclose(Q);

s
fprintf(h,'"\n");
s

//DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE
fseek(h,0,SEEK_SET);
long double produs=1;
unsigned int NrComp=0;
for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
fscanf(h,"%f",&gr);

ifG<g){
1If(gr{
produs*=gr;
NrComp++;
}
}
}
by
fclose(h);

return pow(produs,1./NrComp);

Indicatorul de asemanare al fisierelor text din punctul de vedere al
caracterelor alfabetice continute este implementat cu ajutorul metodei
double OrtoMetric::OrtoCAlfa() al carei cod sursa C++ este:

double OrtoMetric::0rtoCAlfa(){
unsigned char 1,j,k;
FILE *f,*g,*h;
float gr;
h=Fopen(*'GrPartAlfa.txt","w+");

for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
f=fopen(F[i],"r");
g=fopen(FLj1."r");
iT(F&&g){
unsigned int contorlm[26],contor2m[26],
contorlM[26],contor2M[26];
char c;
for(k=0; k<26; k++){
contorlm[k]=0;
contor2m[k]=0;
contorlM[k]=0;
contor2M[k]=0;
}

//citire caractere alfabetice din primul fisier
fscanf(f,"%c",&c);
while(1feof(F)){
iT(c==13)
fscanf(f,'"\n");

else
{
i f(c>=65&&c<=90)
contorlM[c-"A"]++;
else
if(c>=978&c<=122)
contorim[c-"a"]++;
}
s
fscanf(f,"%c",&c);
}
//citire caractere alfabetice din al doilea
// fisier

fscanf(g,"%c",&c);
while(1feof(Q))
{

if(c==13)
fscanf(g,'\n"");

else

{

i f(c>=65&&c<=90)
contor2M[c-"A"]++;

else
{
iT(c>=978&&Cc<=122)
contor2m[c-"a"]++;
}
}
fscanf(g,""%c",&c);
}
int nca=0;

for(k=0; k<26; k++){
if(contorim[k]==contor2m[k])
nca++;
if(contoriM[k]==contor2M[Kk])
ncat+;

float gr;
gr=(float)ncas52;
fprintf(h,"%5.3F ",gr);

}
else
if(1f)
cout<<"Fisierul U<<FLi]<<" nu se
deschide!"'<<endl ;
else
cout<<"Fisierul U<<Fg]<<" nu se
deschide!"'<<endl;
fclose(T);
fclose(qg);

}
fprintf(h,"\n");
b

//DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE
fseek(h,0,SEEK_SET);
long double produs=1;
unsigned int NrComp=0;
for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
fscanf(h,"%f",&gr);

ifGi<p{
iIf(gr{
produs*=gr;
NrComp++;
}
}
}
}
fclose(h);

return pow(produs,1./NrComp);

Fisierul GrPartAlfa.txt este utilizat pentru stocarea gradelor de
asemanare partiale. Fisierele sunt analizate in pereche pentru determinarea
gradului de asemanare partial, iar indicatorul sintetic se obtine prin
determinarea mediei geometrice a indicatorilor partiali.

Metoda double OrtoMetric::OrtoUserVoc() implementeaza indicatorul
de asemanare al textelor in raport de un vocabular definit de utilizator.
Continutul metodei este:

double OrtoMetric::0OrtoUserVoc(){

unsigned char 1,j,k;

FILE *f,*g,*h;

FILE *f1,*gl,*h1;

float gr;

struct FA{
char cuv[30];
unsigned int fr;

X

int opt=1;

FA str;

hl=fopen(*'UserVoc.dat","wb+");

while(opt){
cout<<"Introduceti cuvant vocabular:";
cin>>str.cuv;

str.fr=0;
fwrite(&str,sizeof(FA),1,hl);
cout<<"Continuati?(0/1) ";
cin>>opt;

}

h=Fopen("'GrPartUserVoc.txt","w+'");
for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
f=fopen(F[i],"r");
g=fopen(FLil."r");
if(f&&g){
fl=Fopen('FrecvF.dat","wb+");
gl=Ffopen("'FrecvG.dat","wb+");
fseek(hl,0,SEEK_SET);
fread(&str,sizeof(str),1,hl);
int nrc=0;
while(1feof(hl)){
nrc++;
fwrite(&str,sizeof(str),1,fl);
fwrite(&str,sizeof(str),1,gl);
fread(&str,sizeof(str),1,hl);

}

//DETERMINARE FRECVENTE DE APARITIE PENTRU
// PRIMUL FISIER

char CuvF[30];

char size=sizeof(FA);
fseek(f1,0,SEEK_END);

long int dim=ftell(fl)/size;

fscanf(f,"%s",CuvF);
while(1feof(F)){
fseek(f1,0,SEEK_SET);

for(k=1;k<=dim;k++){
fread(&str,sizeof(FA),1,fl);
if(strcmp(CuvF,str.cuv)==0){
str._fr++;

fseek(fl,-size,SEEK_CUR);
fwrite(&str,sizeof(FA),1,f1l);
}

}
fscanf(F,""%s",CuvF);
¥

//DETERMINARE FRECVENTE DE APARITIE PENTRU
//AL DOILEA FISIER

fseek(gl,0,SEEK_END);

dim=fFtell(gl)/size;

fscanf(g,"%s",CuvF);
while(1feof(g)){
fseek(gl,0,SEEK SET);
for(k=1;k<=dim;k++){
fread(&str,sizeof(FA),1,91);
if(strcmp(CuvF,str.cuv)==0){
str._fr++;
char size=sizeof(FA);
fseek(gl,-size,SEEK_CUR);

fwrite(&str,sizeof(FA),1,9l);

}

}
fscanf(g,"%s",CuvF);
}

int nfa=0;
fseek(f1,0,SEEK_SET);
fseek(gl,0,SEEK_SET);
FA strf,strg;

for(k=1;k<=dim;k++){
fread(&strf,sizeof(FA),1,fl);
fread(&strg,sizeof(FA),1,g9l);

if(strf.fr==strg.fr){
if(strf.fr) nfat++;
else nrc--;

}

float gr;
gr=(float)nfa/nrc;
fprintf(h,"%5.3F ",gr);

fclose(Tl);
fclose(gl);

else
if(1fr)
cout<<"Fisierul U<<FLi]<<" nu
deschide!"<<endl;
else
cout<<"Fisierul U<<F[j]<<" nu
deschide!"<<endl;
fclose(f);
fclose(Q);

by
fprintf(h,'"\n");

3
fclose(hl);

//DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE
fseek(h,0,SEEK_SET);
long double produs=1;
unsigned int NrComp=0;
for(i=0; i<NrFis; i++){
for(J=0; J<NrFis; j++){
fscanf(h,"%f",&gr);

ifGi<y){
if(gr){
produs*=gr;
NrComp++;
}
}
¥
}
fclose(h);

return pow(produs,1./NrComp);

se

se

Analiza asemanarii fisierelor din lotul de fisiere este realizata si din
punctul de vedere al vocabularelor acestora. Metoda care implementeaza
aceasta metrica de asemanare este double OrtoMetric::OrtoFisVoc().

double OrtoMetric::0OrtoFisVoc(){

unsigned char 1,j,k;

FILE *f,*g,*h;

FILE *f1,*gl;

float gr;

struct FA{
char cuv[30];
unsigned int fr;

X

h=Fopen("'GrPartFisVoc.txt","w+");
for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
f=fopen(F[i],"'r"");
g=fopen(F[j1."r");
iF(f&&g){
fl=Fopen("'FrecvF.dat","wb+");
gl=fopen("'FrecvG.dat","wb+");
FA str;

//DETERMINARE FRECVENTE DE APARITIE PENTRU
// PRIMUL FISIER

char CuvF[30];

char size=sizeof(FA);

long int dim;

fscanf(f,""%s",CuvF);

while(1feof(F)){
fseek(f1,0,SEEK_END);
dim=Ftell(fl)/size;

fseek(f1,0,SEEK_SET);
char vb=0;
for(k=1;k<=dim&&(1vb) ;k++){
fread(&str,sizeof(FA),1,fl);
if(strcmp(CuvF,str.cuv)==0){
str._fr++;

fseek(fl,-size,SEEK_CUR);
fwrite(&str,sizeof(FA),1,f1l);

vb=1;
}
}
iT(lvb){
str.fr=1;

strcpy(str.cuv,CuvF);
fseek(f1,0,SEEK_END);
fwrite(&str,sizeof(str),1,fl);
3
Ffscanf(f,""%s",CuvF);

}

//DETERMINARE FRECVENTE DE APARITIE PENTRU
//AL DOILEA FISIER
fscanf(g,""%s",CuvF);

else

deschide!"<<endl;

deschide!"'<<endl ;

while(1feof(g)){

}

fseek(gl,0,SEEK END);
dim=ftell(gl)/size;

fseek(gl,0,SEEK _SET);
char vb=0;
for(k=1;k<=dim&&(1vb) ;k++){
fread(&str,sizeof(FA),1,9l1);
if(strcmp(CuvF,str.cuv)==0){
str._fr++;
char size=sizeof(FA);
fseek(gl,-size,SEEK_CUR);
fwrite(&str,sizeof(FA),1,g9l);

vb=1;
¥
3
iT(lvb){
str.fr=1;

strcpy(str.cuv,CuvF);
fseek(gl,0,SEEK_END);
fwrite(&str,sizeof(str),1,gl);

by
fscanf(g,"%s",CuvF);

unsigned int nci=0,ncvf=0;
fseek(f1,0,SEEK_END);
dim=Ftell (Fl1)/size;
fseek(gl,0,SEEK_END);

long int diml=ftell(gl)/size;
FA strf,strg;
fseek(f1,0,SEEK_SET);

for(k=1;k<=dim;k++){

}

fread(&strf,sizeof(FA),1,fl);

fseek(gl,0,SEEK_SET);
for(int k1=1;kl<=diml;kl1++){
fread(&strg,sizeof(FA),1,9l);

if(stremp(strf.cuv,strg.cuv)==0){
nci++;
if(strf.fr==strg.fr) ncvf++;

float gr;
gr=(float)ncvf/(dim+diml-nci);
fprintf(h,"%5.3F ",gr);

fclose(fl);
fclose(gl);
if(1f)
cout<<"Fisierul U<<FLi]<<" nu
else
cout<<"Fisierul T<<F[j]<<" nu

se

se

fclose(T);
fclose(Q);

by
fprintf(h, " \n");
}

//DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE
fseek(h,0,SEEK_SET);
long double produs=1;
unsigned int NrComp=0;
for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
fscanf(h,"%f",&gr);

if(i<j){
if(ar){
produs*=gr;
NrComp++;
}
}
}
3
fclose(h);

return pow(produs,1./NrComp);

Metoda double OrtoMetric::0OrtoMatVoc() implementeaza metrica de
asemanare a fisierelor ce contin texte privind pozitia cuvintelor in cadrul
acestora. Codul sursa C++ al metodei este descris in continuare:

double OrtoMetric::0OrtoMatVoc(){
unsigned char i,j,k,I;
FILE *f,*g,*h;
FILE *fl1,*gl,*f2,*g2;
float gr;
struct FA{
char cuv[30];
unsigned int *fr;

¥

h=Fopen(*'GrPartMatVoc.txt","w+");
for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
f=fopen(F[i],"r");
g=fopen(FLil."r");
1T(f&&g){
fl=fopen('VocF.txt","w+");
gl=fopen('VocG.txt","w+");

f2=Fopen("'CuvMatF.txt","w+");
g2=fopen("'CuvMatG.txt","w+");
FA str;

//CONSTRUIRE VOCABULAR PRIMUL FISIER
char CuvF[30],CuvD[30];

unsigned int nrcF=0;

char size=sizeof(CuvF);

fscanf(f,"%s",CuvF);
while(1feof(F)){

}

fseek(f1,0,SEEK SET);
char vb=0;
fscanf(fl,""%s",str.cuv);
while(1feof(f1)){

if(strcmp(CuvF,str._.cuv)==0) vb=1;
fscanf(fl,"%s",str.cuv);

}

iT(lvb){
fprintf(fl,"%s ",CuvF);
Nrck++;

3

fscanf(f,"%s",CuvF);

str.fr=new unsigned int[nrcF];
fseek(f1,0,SEEK _SET);

fscanf(fl,"%s",str.cuv);
unsigned int nri=0;
while(1feof(f1)){

}

nri++;
for(1=0; I<nrcF; 1++) str.fr[1]=0;

fseek(f,0,SEEK_SET);
Ffscanf(f,""%s",CuvF);
while(1feof(F)){
if(strcmp(str.cuv,CuvF)==0){
fscanf(f,""%s",CuvF);
if(1feof(F)){
fseek(f1,0,SEEK_SET);
for(unsigned int 1=0;lI<nrcF;I1++){
fscanf(fl,"%s",CuvD);
if(strcmp(CuvF,CuvD)==0)
str.fr1]++;

}
}
else fscanf(f,"%s",CuvF);
}

//SCRIEREA IN FISIERUL TEXT A LINIEI k CU

// FRECVENTELE PERECHILOR

fprintf(F2,"%s ",str.cuv);

for(int unsigned 1=0;lI<nrcF;Il++)
fprintf(f2,"%i ",str.fr[1]);

fprintf(f2,'"\n"");

fseek(f1,0,SEEK_SET);
for(1=0; I<=nri;I++)
fscanf(fl,"%s",str.cuv);

//CONSTRUIRE VOCABULAR AL DOILEA FISIER
unsigned int nrcG=0;

fscanf(g,"%s",CuvF);
while(1feof(g)){

fseek(gl,0,SEEK_SET);

char vb=0;

fscanf(gl, "%s",str.cuv);

while(1feof(gl)){
if(strcmp(CuvF,str.cuv)==0) vb=1;
fscanf(gl,"%s",str.cuv);

}

if(lvb){
fprintf(gl,"%s ",CuvF);
nrcG++;

}

fscanf(g, "%s",CuvF);
}

str.fr=new unsigned int[nrcG];
fseek(gl,0,SEEK _SET);

fscanf(gl,"%s",str.cuv);
nri=0;
while(1feof(gl)){
nri++;
for(1=0; I<nrcF;1++) str_fr[1]=0;

fseek(g,0,SEEK_SET);
fscanf(g,"%s",CuvF);
while(1feof(g)){
if(strcmp(str.cuv,CuvF)==0){
fscanf(g,"%s",CuvF);
if(1feof(g)){
fseek(gl,0,SEEK SET);
for(unsigned int 1=0;lI<nrcF;I1++){
fscanf(gl,"%s",CuvD);
if(strcmp(CuvF,CuvD)==0)
str.fr1]++;

}
}
}

else fscanf(g,"%s",CuvF);
s

//SCRIEREA IN FISIERUL TEXT A LINIEI k CU

// FRECVENTELE PERECHILOR

fprintf(g2,"%s ",str.cuv);

for(unsigned int 1=0;lI<nrcG;I1++)
fprintf(g2,"%i ",str.fr[1]);

fprintf(g2,'\n"");

fseek(gl,0,SEEK_SET);
for(1=0; I<=nri;I++)
fscanf(gl,"%s",str.cuv);

//DETERMINARE COMPONENTE GRAD DE ASEMANARE
// PENTRU FISIERELE F SI G

unsigned int nfm=0,ntcc=0;

FA strl;

str.fr=new unsigned int[nrcF];

strl.fr=new unsigned int[nrcG];

unsigned int frc;

for(k=0;k<nrcF;k++){

fseek(f2,0,SEEK_SET);

Ffor(1=0; I<k; I1++){
fscanf(f2,"%s",CuvF);
for(unsigned int m=0;m<nrcG;m++){

fscanf(f2,"%i",&Frc);
strl_fr[m]=Ffrc;
}

}

fscanf(f2,"%s",CuvF);

strcpy(str.cuv,CuvF);

Ffor(1=0; I<nrcF; 1++){
fscanf(f2,"%i",&Frc);
str.fr[1]=Ffrc;

}

fseek(g2,0,SEEK_SET);
fscanf(g2,"%s",CuvD);
char vb=0;
while(1feof(g2)&&vb){

if(strcmp(CuvF, CuvD)==0){
ntcc++;
strcpy(strl.cuv,CuvD);
Ffor(1=0; I<nrcG; 1++){
fscanf(g2,"%i",&Frc);
stri._fr[1]=frc;

else{
Ffor(1=0; I<nrcG; 1++){
fscanf(g2,"%i",&Frc);
strl.fr[1]=Ffrc;

}
3
fscanf(g2,"%s",CuvD);
}
iT(vb){

unsigned int pozF=0;

fseek(f2,0,SEEK_SET);

fscanf(f2,"%s",CuvF);

while(1feof(f2)){
fseek(g2,0,SEEK_SET);
fscanf(g2,"%s",CuvD);
unsigned int pozG=0;
while(1feof(g2)){
if(strcmp(CuvF,CuvD)==0){

if(str.fr[pozF]==strl.fr[pozG])
nfm++;

by

for(1=0; I<nrcG; 1++){

fscanf(g2,"%i",&Frc);
stri.fr[1]=Frc;

by
fscanf(g2,"%s",CuvD);
pozG++;

}
Ffor(1=0; I<nrcG; 1++){
fscanf(f2,"%i",&frc);

str.fr[1]=frc;

}
fscanf(f2,"%s",CuvF);

pozF++;
}
}
}
//DETERMINAREA GRADULUI DE ASEMANARE
float gr;

gr=(float)nfm/(ntcc*ntcc);
fprintf(h,"%5.3F ",gr);

fclose(Tfl);
fclose(gl);
fclose(f2);
fclose(g2);
}
else
if(1f)
cout<<"Fisierul U<<FLi]<<" nu se
deschide!"'<<endl ;
else
cout<<"Fisierul U<<FJl<<" nu se
deschide!"'<<endl;
fclose(T);
fclose(qg);

}
fprintf(h, "\n");
b

//DETERMINAREA GRADULUI DE ASEMANARE A LOTULUI DE FISIERE
fseek(h,0,SEEK_SET);
long double produs=1;
unsigned int NrComp=0;
for(i=0; i<NrFis; i++){
for(J=0; j<NrFis; j++){
fscanf(h,"%f",&gr);

ifGi<p){
produs*=gr;
NrComp++;
}
}
3
fclose(h);

return pow(produs,1./NrComp);

Pentru reprezentare interna a textului entitatilor software, se propun

mai multe variante, [Sand05]:

- reprezentarea cu ajutorul a doi vectori — pentru fiecare entitate se
asociaza un vector VD, cu nvd elemente, care memoreaza toate
cuvintele distincte din si un vector VF, cu nvd elemente, care
retine pe fiecare pozitie k, k = 1, 2, ..., nvd, numarul de aparitii
ale fiecarui cuvant din VD;

- reprezentare prin utilizarea de pointeri - se utilizeaza o lista
simplu inlantuita care are ca inregistrare in nod perechea (vd,

vfi); unde vd; este un element din vectorul VD, iar vf; este un
element din vectorul VF;

reprezentarea prin arbore de cautare - cheia din arbore este data
de un cuvant; ca informatie utila, nodul are atasat numarul de
aparitii ale cuvantului in titlul proiectului;

reprezentarea prin tabele gestionate de un SGBD - se defineste o
tabela destinata memorarii textelor entitatilor software, in care
cheia primara este un cod unic de identificare asociat fiecarei
entitati; aceasta devine cheie externa intr-o tabeld, care contine
coloanele: nr_proiect, cuvant si aparitii; in aceasta tabelda se
stocheaza cuvintele, impreuna cu numarul de aparitii.

Analiza ortogonalitatii programelor sursa din anexele proiectelor din
baza de proiecte presupune construirea unei matrice ale indicatorilor de
ortogonalitate agregati pentru perechile de programe sursa (PRG;, PRG;).
Indicatorul agregat de ortogonalitate asociat perechii (PRG;, PRG;) se obtine
prin determinarea ortogonalitatii urmatoarelor metrici primare, [Popa02]:

lungimea programelor — presupune determinarea marimii pe disc
a fisierelor in care sunt stocate codurile sursa ale aplicatiilor din
baza de proiecte;

frecventele de aparitie a caracterelor alfabetice - consta in
incarcarea elementelor masivelor unidimensionale cu numarul de
aparitii al caracterelor utilizate in construirea programelor;
vocabularul utilizator - utilizatorul introduce cuvinte, rezervate
sau definite, pe care le urmareste in programele analizate din
punctul de vedere al frecventelor de aparitie;

vocabularul programelor - se identifica cuvintele diferite din
textele sursa si se determina frecventa lor de aparitie;

vocabularul comun - consta in identificarea cuvintelor comune din
vocabularele textelor sursa si determinarea frecventelor de
aparitie;

structura entitatilor - constda in impartirea in paragrafe a
programelor sursa si determinarea de frecvente de aparitie pentru
fiecare paragraf;

variabilele definite - pe baza sintaxei limbajului se identifica
variabilele utilizate si se determina frecventele de aparitie;

matrice de precedenta a variabilelor — presupune specificarea
ordinii de folosire a variabilelor printr-o structura de tip masiv
bidimensional; compararea valorilor din matricea de precedenta
conduce la determinarea indicatorului de ortogonalitate
corespunzator acestui criteriu;

pozitia variabilelor - presupune identificarea variabilelor si
retinerea pozitiilor acestora in functie de instructiunile asociate in
utilizare.

Modul in care este proiectat permite includerea de noi indicatori si
implementarea de noi mecanisme de analiza comparata a datelor.

