19. EXPRESII DE DEFINIRE SI REFERIRE ALE
STRUCTURILOR DE DATE

19.1 Construirea expresiilor

Structurile statice de date uzuale sunt: vector, matrice, articol, fisier.
Structurile dinamice uzuale sunt: lista, stiva, coada, arbore si graf.

Limbajele de programare contin tipuri fundamentale de date si tipuri
derivate care permit implementarea tuturor structurilor de date.

Este important ca reprezentarea structurilor de date sa se efectueze
cu ajutorul modelului analitic pentru o descriere riguroasa.

Se definesc functii de descriere a structurilor de date:

e cont() - extragere continut structura de date;

e succ() - stabilire succesor;

e pred() - stabilire predecesor;

e adr() - specificare adresa zona de memorie unde se afla o anumita
structura;

e lg() - specificare lungime zona de memorie ocupata de structura
de date aleasa;

e tip() - specificare elemente structura de date sub forma naturii
acestora;

e ref() - referire variabila de tip pointer.

Obiectivul acestui capitol este de a evidentia modul in care se
construiesc si se utilizeaza expresiile de definire si referire a tuturor
structurilor de date.

Se considera multimea operanzilor formata din identificator si
constante.

Se considera multimea operatorilor utilizati in limbajul C++ pentru
descrierea si referirea structurilor de date:

- parantezele: [1, ()

- operatorul punct: .

- operatorul de indirectare: *

- operatorul de referire a articolelor declarate ca pointeri: ->

Expresiile sunt definite cu ajutorul unui metalimbaj, astfel [Rosc98]:

<expresie> ::= <termen> |

<expresie> ::= <termen><operator binar><termen> |
<expresie> ::= <operator unar><termen> |
<expresie> :!:= <termen><operator unar>

Definirea expresiilor, cu mentionarea explicita a operatorilor, se
realizeaza, conform [Rosc98], prin intermediul diagramelor de sintaxa:
a) definirea masivelor:

expresie definire —— termen @ expresie @

masive

Figura 19.1 Diagrama de sintaxa pentru definirea masivelor

b) definirea datelor de tip articol:

expresie definire

Yan\ expresie definire
articole ~ —|_termen d/ campuri +

Figura 19.2 Diagrama de sintaxa pentru definirea articolului
Metalimbajele au rol universal in construirea expresiilor de definire si

referire a structurilor de date. Diagramele ofera o imagine grafica cu privire
la procesul de construirea a acestor expresii.

19.2 Expresii de definire

Pentru masive unidimensionale, expresia de definire in limbajul C++

este:
tip nume_v[expresie];

unde:

o tip - natura elementelor retinute in vector. Este un tip fundamental
al limbajului, char, int, float, double etc., sau un tip construit de
utilizator, de exemplu articol, obiect etc;

e nume_v - identificatorului masivului unidimensional in cadrul
programului;

e expresie - specifica dimensiunea maxima a vectorului, numarul de
elemente al acestuia.

Pentru masivele bidimensionale, expresia de definire este:
tip nume_mat[expresie;][expresies];

unde:

e tip - natura elementelor retinute in matrice. Este un tip
fundamental al limbajului, char, int, float, double etc.,
sau un tip construit de utilizator, de exemplu articol,
obiect etc;

e nume_mat - identificatorului masivului bidimensional in cadrul
programului;

e expresie;, - specifica dimensiunea maxima a matricei, adica

expresie, numarul de linii, respectiv. numarul de coloane al
acesteia.

Pentru masive n-dimensionale, expresia de definire este:

tip nume_m[expresie;][expresies] ... [expresie,];

unde:

e tip - natura elementelor retinute in masiv. Este un tip
fundamental al limbajului, char, int, float, double etc., sau
un unul construit de utilizator, de tip articol, obiect etc;

e NUME_M - identificatorului masivului n-dimensional in cadrul
programului;
e expresie;, - specificd dimensiunea maxima a masivului, adica

expresie,,...,, numarul componente al acestuia pe fiecare dimensiune.
expresie,

La definirea masivelor, se remarca faptul ca expresiile care specifica
numarul maxim de elemente ale masivului pe fiecare dimensiune trebuie sa
fie constant. Acesta este un neajuns atunci cand se urmareste realizarea
unei aplicatii flexibile si eficiente din punctul de vedere al gestionarii
memoriei.

Solutia la aceasta problema o constituie alocarea dinamica a
masivelor, folosindu-se fie functiile malloc, respectiv free, fie operatorii new,
respectiv delete.

Pentru definirea tipului articol se construieste urmatoarea expresie:

struct nume_art {
tip; cdmpi;
tip, camps;

tipn cdmp,;

}

unde:

e struct - cuvant cheie care permite definirea articolelor in
limbajul C++;

e nume_art - identificatorul articolului in cadrul programului;

e tip;, tips, ..., tip, - natura campurilor din cadrul articolului. Tipurile
utilizate sunt cele specifice limbajului, char, int, float,
double etc., sau definite de utilizator. De mentionat ca
nu se permite definirea in cadrul articolului a unui camp
de tipul articolului, dar se pot defini pointeri catre
acesta;

e cAmp;, cdmp,, - identificatorii campurilor articolului prin intermediul

..., CAmp, carora se refera componentele tipului articol.

Definirea structurilor autoreferite se realizeaza dupa urmatorul
sablon:

struct nume_auto {
tip; cdmpy;
tip, cdmp;;

tip, cadmpn;
nume_auto *pcadmp;

};

Definirea structurii de tip fisier se realizeaza cu ajutorul structurii
standard FILE astfel:

FILE *T;

unde:
e FILE - structura standard care permite definirea identificatorilor de fisier
in limbajul C++;
of - identificatorul de fisier folosit in cadrul programului, care se
declara ca pointer catre structura standard FILE.
Lista simplu inlantuita este o structura de date secventiala, fiecare
element al listei, denumit nod, continand informatia propriu-zisa si adresa
de legatura cu un alt nod. Definirea unui nod al listei se realizeaza astfel:

struct nods {
tip; cdmp;;
tip, cdmpy;

tipn cAmpn;

nods *urm;
+}
unde:
e nods - identificatorul structurii unui element in cadrul listei;
e tip;, tips, ..., tip, - natura elementelor care formeaza informatia utila a
nodului;
e cA∓, cdmp,, - identificatorii cdmpurilor informatiei utile;
..., cdmp,
e urm - retine adresa urmatorului nod in lista.

Lista dublu inlantuita este o structura de date secventiala, fiecare
element al listei, denumit nod, continand informatia propriu-zisa si adresele
de legatura cu nodul anterior, respectiv nodul urmator in lista. Definirea
unui nod al listei se realizeaza astfel:

struct nodd {
tip; cdmp;;
tip2 cdmpz;

tip, camp,;
nodd *pred, *urm;

}

unde semnificatia campurilor este aceeasi ca la lista simplu inlantuita, cu
mentiunea ca pred retine adresa nodului predecesor in lista.

Stiva este, de asemenea, o structura liniara, de tip lista simplu
inlantuita, cu deosebirea ca inserarile si extragerile de elemente ale liste se
face intotdeauna la un acelasi capat al listei, respectand disciplina LIFO -
Last Input First Output.

Definirea structurii de tip stiva se realizeaza la fel cu cea a unei liste
simplu inlantuite.

Pointerul la stiva prin care se manipuleaza structura in ansamblu se
numeste varful stivei. Definirea acestuia are loc astfel:

nods *stiva;

Conceptul de stiva este implementat folosind si masivele
unidimensionale. Dezavantajul acestei abordari este dat de numarul maxim
de elemente care sunt stocate, numarul de elemente din lista fiind acelasi
pe durata de executie a programului.

In functie de dimensiunea tipurilor elementelor care sunt stocate in
structura, exista doua abordari:

1. daca dimensiunea este mare, se foloseste vectorul pentru

stocarea pointerilor spre elementele alocate dinamic:

struct stiva {
tip *vec[dim_max];

int sp;
+
unde:
e stiva - structura de tip articol;
e vec - vectorul de pointeri spre elementele stivei;
e sSp - varful stivei.

Aceasta implementare este preferabil sa fie evitata, ea combinand
dezavantajul inflexibilitatii vectorilor cu inconvenientul ocuparii unui spatiu
apreciabil de memorie cu informatia de legatura. Acesta este motivul pentru
care se stiva se implementeaza cu ajutorul listelor simplu inlantuite.

2. daca tipul elementelor este unul standard, vectorul este utilizat

pentru stocarea elementelor propriu-zise:

struct stiva {
tip vec[dim_max];
int sp;

};

Aceasta implementare se justificd pentru anumite probleme, ea
eliminand necesitatea rezervarii unui spatiu suplimentar de memorie pentru
informatia de legatura. A

Coada este implementata avand la baza tot structura de lista. In
cadrul acestei structuri disciplina de lucru este FIFO - First Input First
Output. Inserarea nodurilor are loc la sfarsitul listei, iar extragerea acestora
la inceputul listei.

Definirea acestei structuri are loc astfel:

struct coada{
nods *prim, *ultim;

};
unde:
e coada - structura de tip coad3;
e nods - identificator structura element lista simplu inlantuita;
e prim, ultim - primul, respectiv ultimul nod care permit implementarea

operatiilor specifice structurii de coada.
Arborele reprezinta o multime nevida si finita de elemente, numite
noduri, cu proprietatile:
- exista doar un singur nod, numit radacina arborelui;

- celelalte noduri formeaza submultimi disjuncte ale arborelui, care
la randul lor respecta cele doua proprietati. Aceste submultimi
poarta numele de subarbori ai radacinii.

Arborii binari sunt formati dintr-o multime finita de elemente care
este fie vida, fie formata dintr-un singur element numit radacina, iar
celelalte elemente sunt distribuite in maxim doua submultimi disjuncte, care
reprezinta tot arbori binari.

Descrierea structurii de tip arbore binar se realizeaza in limbajul C++

astfel:
struct arb_bin{
tip inf;
arb_bin *st, *dr;
};
unde:
e arb_bin - identificatorul unui element de tip nod al arborelui in cadrul
programului;
e inf - informatia utila prezenta in nod;
e st, dr - elemente ce pastreaza adresele de legatura cu subarborele

stang, respectiv drept al arborelui curent.

Matricea rara este un tip particular de masiv bidimensional cu
urmatoarele caracteristici:

- numar foarte mare de linii si de coloane;

- numdr de elemente nenule foarte mic.

In aplicatiile curente, matricele rare au grade de umplere cuprinse
intre 0,15% si 3%.

Memorarea si lucrul cu matrice rare se efectueaza prin intermediul a
trei vectori in care se memoreaza linia, coloana si valoarea nenula a tuturor
elementelor care nu sunt nule.

Din categoria structurilor de date agregate fac parte si vectorii de
pointeri spre functii. Definirea unui vector de pointeri spre functii se face
conform urmatorului sablon:

tip (*pf[10])();

unde:
e tip - tipul returnat de functie;
e pf - vectorul de pointeri spre functii, dimensiunea acestuia fiind de 10
elemente.
Introducerea in vector a pointerilor spre diverse functii care
returneaza tip se realizeaza astfel:

pf[i]=Ffunctie;

unde:

e pf - vectorul de pointeri spre functii care returneaza tip, iar lista
parametrilor este vida;

e functie - numele dat unei functii care intoarce tip si are lista vida de
parameteri; identificatorul este pointer spre functia respectiva.

Trecerea la limbajul de programare C++ a permis implementarea de
noi structuri de date utilizator pe baza conceptelor definite si caracterizate
in teoria programarii orientate obiect.

Astfel, utilizatorul defineste o clasa de obiecte dupa modelul:

class ClasaUser {
private:
//definire atribute si metode private (incapsulare)
public:
//definire metode de tip constructor si destructor
//definire atribute si metode publice
protected:
//definire atribute si metode de tip protected (mostenire)

};

De exemplu, definirea clasei de obiecte pentru implementarea
structurii de date de tip arbore binar este:

class ArbBinClass{
tip inf;
arb_bin *st, *dr;
public:
ArbBinClass();
~ArbBinClass();
//alte metode

}:

Spre deosebire de structura de date de tip articol, o clasa de obiecte
include atat date, denumite atribute, cat si operatii care se efectueaza
asupra acestora.

Deci, alaturi de stare, o clasa de obiecte include si comportamentul
variabilelor de tip obiect. Comportamentul este evidentiat prin metodele
construite in clasa de obiecte. Acestea opereaza asupra atributelor,
determinand schimbarea starii variabilei obiect prin modificarea valorilor
atributelor.

19.3 Expresii de referire

Referirea structurilor de date are loc:

- la nivel de ansamblu (intreaga structurad);

- la nivel de element al structurii.

Referirea elementelor masivelor unidimensionale se realizeaza astfel:

- cu ajutorul operatorului de indexare: nume[exp];

- cu ajutorul operatorului de indirectare: *(nume+exp).

Identificatorul de masiv unidimensional nume contine adresa primului
element din vector.

Reprezentarea sub forma de zone de memorie a unui vector este
ilustrata in figura urmatoare:

/

| | | | | | zona de memorie

nume

nume[0] nume[1l] nume[2] nume[n-1]

Figura 19.3 Reprezentarea in memorie a unui vector

La referirea elementelor unui vector, depasirea dimensiunii acestuia
conduce la accesarea zonelor de memorie invecinate, rezultatul fiind
imprevizibil.

Referirea elementelor masivelor bidimensionale:

- cu ajutorul operatorului de indexare: numefexp;j[exp:];

- cu ajutorul operatorului de indirectare: *(*(nume+exp;)+expz).

Identificatorul unui masiv bidimensional contine adresa vectorului de
pointeri catre linii. Adresa fiecarei linii a masivului se obtine pornind de la
identificatorul de masiv astfel: nume[exp;] sau *(nume+exp;).

Reprezentarea unui masiv bidimensional sub forma de zone de
memorie este:

pl nume

| /f | | | | N | vector de pointeri
| [. | [.. | |
nume[0][0] nume[0][n-1] nume[m-1][0] nume[m-1][n-1]

Figura 19.4 Reprezentarea in memorie a unui masiv bidimensional

Referirea elementelor masivelor tridimensionale:
- cu ajutorul operatorului de indexare: nume[exp;]J[expz][exps];
- cu ajutorul operatorului de indirectare:
((*(nume+exp;)+expz)+exps).
Identificatorul masivului tridimensional contine adresa unui vector de
pointeri catre matrice, vector de dimensiune exp;. Vectorul de pointeri catre
masive bidimensionale este referit astfel:

numef[exp;] sau *(nume+exp;)

Referirea structurilor de tip articol se realizeaza prin identificatorii de
variabile declarate de acest tip. Astfel, articolele sunt utilizate, la nivel de
ansamblu, in urmatoarele operatii:

- extragere de adresa a unei variabile de tip structura;

- atribuire;

- transmiterea ca argument in functie sau returnarea unei structuri

din functie.

Nu sunt acceptate comparari de forma: nume;!=nume,.

Referirea campurilor din structurile de tip articol se realizeaza prin
intermediul operatorului punct, astfel:

nume.camp;

Reprezentarea si referirea campurilor unei structuri de tip articol:

nume

camp; camp, . camp . camp,

nume.camp

Figura 19.5 Reprezentarea in memorie si referirea unui articol

Daca articolul contine campuri de tip articol, atunci campurile
acestora se refera in mod similar, astfel:

nume.cadmp;.cAmp;.CAMpy;

Referirea structurilor de date autoreferite se realizeaza prin
intermediul operatorului ,->”. Astfel, informatia utild din nod, precum si
adresa de legatura cu nodul urmator, respectiv succesor sunt referite astfel:

nodd *listad;
listad->inf;

listad->urm;
listad->pred;

De asemenea, referirea adresei de legatura a unui nod oarecare a
unui nod din lista dublu inlantuita are loc astfel:
nodd *listad
listad->urm->urm->...->urm;

listad->pred->pred->...->pred;

Pentru structurile de tip stiva si coada, referirea elementelor are loc
in mod asemanator celui de la listele simplu inlantuite.
Referirea elementelor structurii de tip stiva:
nods *stiva;

stiva->inf;
stiva->urm;

stiva ->urm->urm->...->urm;

Referirea nodurilor structurii de tip coada:
coada q;

g.prim->inf;
g.ultim->inf;
g.prim->urm;
g.ultim->ultim;

Adresele si informatia utila din nodurile unui arbore binar se refera in
mod analog cu cele ale unei liste dublu inlantuite:

arb_bin *arbore;

arbore->inf;
arbore->st;
arbore->dr;

Referirea atributelor si metodelor definite si construite intr-o clasa de
obiecte se efectueaza in mod similar cu referirea campurilor din structurile
de date de tip articol.

19.4 Expresii ale structurilor agregate

Structurile prezentate in paragrafele anterioare sunt agregate sub
urmatoarele forme:

- vector de structuri;

- structura de vectori;

- vectori de pointeri spre structuri;

- vectori de pointeri spre functii;

- masive bi- si n-dimensionale de structuri;

- structura de masive bi- si n-dimensionale;

- masive bi- si n-dimensionale de pointeri spre structuri.

Definirea unui vector de structuri se realizeaza astfel:

nume_art vector[expresie];

unde:
e nume_art - tipul elementelor stocate in vector (articol);
e vector - identificatorul vectorului de structuri in cadrul programului;
e expresie - dimensiunea maxima a vectorului.
Referirea elementelor acestui vector are loc astfel:
vector[i].camp;
unde:

e vector - identificator vector de structuri;

o - elementul de rang i care se refera;
e camp - un camp din cadrul elementului de rang i.
Definirea unei structuri de vectori:

struct struct_vect {
tip; vi[expi];

tipn valexpn];
};

unde:
e struct_vect
o tipy, ..., tipy

identificatorul structurii de vectori;
natura elementelor vectorilor;

® Vi ..., Vg - identificatorii vectorilor;
e exp;, ..., €xXp, — dimensiuni maxime ale vectorilor.
Exemplu:

struct str{
int v[100];
}

Referirea elementelor unei structuri de vectori:

struct_vect s, *ps;

s.vili];
ps->Vuljl;
unde:
e s - variabile de tip articol;

e ps - variabila de tip pointer spre articol;
e i,j - rangul elementelor care au fost referite.

Definirea vectorilor de pointeri spre structuri se realizeaza conform
urmatorului sablon:

nume_art *v[exp];

unde:

e nume_art - denumire structura de tip articol;

oV - identificator variabila de tip masiv unidimensional cu
elemente pointeri spre structuri de tip nume_art;

e exp - dimensiune maxima a vectorului.

Referirea unui camp a vectorului de pointeri:
v[i]->camp;
unde:

o Vv —identificatorul vectorului de pointeri in cadrul programului;
o | - rangul termenului a carui continut este referit;

e cdmp - un camp al articolului desemnat de elementul i.
Intr-o expresie de referire a unei structuri agregate, precizarea
campului are loc de la dreapta la stéanga, astfel:

C++:

a.b.c - refera campul c din structura b, structura b fiind un camp
al structurii a;

a.b.c[i] - refera elementul i al campului ¢ de tip vector, inclus in
structura b, unde b este un camp al structurii a;

a.b[i].c — refera campul c al elementului i din vectorul b, b fiind un
camp structura a;

afi].b.c - refera campul c al structurii b, care este la randul ei
camp in elementul de rang j al structurii a;

a->b->c - refera campul c din structura b, aceasta fiind un camp
de tip pointer al structurii a, care este, de asemenea, o data de tip
pointer;

a.(*b) - refera continutul zonei de memorie a carei adresa se afla
in campul b, data de tip pointer, al structurii statice a;

(*a).b - refera cdmpul b al structurii aflate in zona de memorie a
carei adresa este retinuta in a, care este o structura alocata
dinamic;

*(a+i).b - refera campul b al unei structuri de tip articol care se
afla stocat la adresa continuta in vectorul a, /i indicdnd rangul
structurii in vector;

a.*(b+i).c - refera campul c al articolului aflat pe pozitia /i in
vectorul b, b fiind cdmp al structurii de tip articol a;

a->b.c - refera campul c al structurii statice de tip articol b, care
este un camp al structurii dinamice de tip articol a;

a.b->c - refera campul c al structurii dinamice b, b fiind camp al
structurii statice a, de tip articol.

Se considera urmatoarea secventa scrisa in limbajul de programare

#include <stdio.h>
#include <iostream.h>

class matrix{
public:
int n,m,**a;
matrix();
matrix(int k, int 1);
int** aloc_mat(int, int);

matrix: :matrix()
cout<<"The line number is:";
cin>>n;
cout<<"The column number is:";
cin>>m;

a=aloc_mat(n,m);
cout<<"The matrix is:";
for(int i=0; i<n; i++)
for(int j=0; j<m; j++){
cout<<'\n a["<<i<<"]["<<j<<]=";

cin>>a[i]lil;

}

3

matrix: :matrix(int k, int I)
{
n=k;
m=1;
a=aloc_mat(n,m);
for(int i=0; i<n; i++)
for (int j=0; j<m; j++) a[il[il=0;
}
int** matrix::aloc_mat(int, int){
int **pmat;
pmat=new Int*[n];
for (int i=0; i<n; i++)

pmat[i]=new int[m];
return pmat;

void main(){
matrix A(2,3);

matrix *B=new matrix(3,2);
matrix *C=new matrix[3];

In tabelul 19.1 sunt exemplificate expresii de referire a obiectelor si
atributelor, continutul accesat si descrierea acestuia.

Tabelul nr. 19.1 Exemplificarea expresiilor de referire a obiectelor si
atributelor clasei matrix

Expresie de Continut Descriere
referire

A.n 2 | Numarul de linii al matricei A

A.m 3 | Numarul de coloane al matricei A

A.a 0x00441ac0 | Adresa inceput a zonei de memorie alocata
dinamic pentru stocarea elementelor
matricei A

A.a[0] 0x00441a80 | Adresa de inceput a zonei de memorie
alocata dinamic pentru linia 1 a matricei A

A.a[0][0] 0 | Valoarea elementului de pe linia 1, coloana
1 din matricea A

&A 0x0013ff68 | Adresa de memorie statica la care este
stocat obiectul A

&A.n 0x0013ff68 | Adresa de memorie statica la care este
stocat atributul n

&A.m 0x0013fféc | Adresa de memorie statica la care este
stocat atributul m

&A.a 0x0013ff70 | Adresa de memorie statica la care este
stocat atributul a

B->n 3 | Numarul de linii al matricei A

(*B).n

B->m 2 | Numarul de coloane al matricei A

(*B).m

B->a 0x004419c0 | Adresa inceput a zonei de memorie alocata

(*B).a dinamic pentru stocarea elementelor
matricei B

B->a[0] 0x00441980 | Adresa de inceput a zonei de memorie

(*B).a[0] alocata dinamic pentru linia 1 a matricei B

B->a[0][0] 0 | Valoarea elementului de pe linia 1, coloana

(*B).a[0][0] 1 din matricea B

&B 0x0013ff64 | Adresa de memorie staticd la care este
stocat obiectul A

&B->n 0x00441a00 | Adresa de memorie dinamica la care este

&(*B).n stocat atributul n

&B->m 0x00441a04 | Adresa de memorie dinamica la care este

&(*B).m stocat atributul m

&B->a 0x00441a08 | Adresa de memorie dinamica la care este

&(*B).a stocat atributul a

C[0].n 2 [Numarul de linii al primei matrice din
vectorul alocat dinamic C

C[1].m 2 | Numarul de coloane al celei de-a doua
matrice din vectorul alocat dinamic C

*(C+i) - | Referirea obiectului matrice cu pozitia i+1 in
vectorul alocat dinamic C

C[2].a 0x00441210 | Adresa inceput a zonei de memorie alocata
dinamic pentru stocarea elementelor
matricei cu pozitia 3 in vectorul de obiecte
alocat dinamic C

C[1].a[0] 0x00441310 | Adresa de inceput a zonei de memorie
alocata dinamic pentru linia 1 a matricei cu
pozitia 2 in vectorul de obiecte alocat
dinamic C

C[0].a[0][0] 13 | Valoarea elementului de pe linia 1, coloana
1 din matricea cu pozitia 1 in vectorul de
obiecte alocat dinamic C

Apelul unei functii si obtinerea rezultatului returnat de aceasta prin
intermediul vectorului de pointeri spre functii se realizeaza dupa cum

urmeaza:

CpfLIDO:;
unde:
e pf - vectorul de pointeri spre functii;

e/ - rangul in vectorul de pointeri a functiei care se apeleaza.

Construirea

expresiilor

in limbajele de programare, conform

specificatiilor prevazute de fiecare limbaj, prezinta o importanta deosebita
in dezvoltarea corecta din punct de vedere sintactic si mai ales semantic a
programelor sursa. Expresiile trebuie sa conduca la atingerea obiectivelor
stabilite in etapa de proiectare a aplicatiei.

Construirea expresiilor este o conditie necesara, dar nu si suficienta
pentru a obtine rezultate corecte din punct de vedere semantic. Se impune,
deci, si o referire corectda a variabilelor si expresiilor definite, respectiv
construite intr-un program sursa pentru ca rezultatele obtinute sa fie in
concordanta cu cerintele utilizatorilor.

