18. FISIERE

18.1 Structuri de date externe

Masivele, listele si arborii binari, sunt structuri de date interne, prin
faptul ca se afla in memoria interna a unui sistem de calcul. In momentul in
care aceste structuri sunt stocate in memoria externa - pe discuri, benzi
magnetice, dischete, compact-discuri acestea sunt numite structuri de date
externe.

Memoria interna a unui calculator este imaginata ca un sir ordonat de
baiti. Fiecare bait se defineste prin adresa si prin continut. Memoria externa
este imaginata, de asemenea, ca un sir de baiti, cu deosebirea ca pentru
calculul adresei sunt luate in considerare elementele specifice modului de
structurare a suportului.

Astfel, atunci cand suportul este organizat in piste, cilindri si
problematica accesului este rezolvata prin pozitionarea pe aceste unitati de
acces, adresarea efectuandu-se luand in calcul elemente structurale.

In plus, particularitatile de desfasurare in plan fizic a operatiilor de
intrare/iesire determina analiza distincta a raportului dintre semnificatia
instructiunilor I/O din programe si operatiile efective de citire/scriere de pe
suportul extern.

Presupunand ca pentru un sistem de calcul modulele care realizeaza
citiri/scrieri opereaza cu continutul unor buffere de lungime L, tot timpul
aceste functii furnizeaza informatii asupra inceputului zonei ce este
explorata, lungimea acesteia fiind rezultatul logicii de organizare a datelor.

Programatorul are acces direct sau indirect la zona de memorie
tampon prin intermediul adresei sale de inceput sau prin intermediul unei
alte zone de memorie definita in programul sau, zona in care este copiat
continutul bufferului.

5 adresa de Inceput
/ \buffer

Operatii de

b citire / scriere 3
xtern
externd 4 3

Memoria

zona de memorie
definita de
utilizator

Figura 18.1 Operatii de intrare/iesire

Dinamica operatiilor de intrare/iesire determina actualizarea variabilei
pointer care delimiteaza partea de inceput a subzonei din buffer ce este
copiata in zona de memorie definita de utilizator.

In cazul functiilor de citire/scriere a unui caracter, variabila pointer se
modifica cu o unitate, marcand exact schimbul de informatii in dialogul om
- calculator .

In cazul citirilor/scrierilor cu format delimitatorul acceptat este
analizat, iar algoritmul de punere in corespondenta este astfel proiectat
incat acesta nu este integrat in setul informatiilor.

| 1| 5]/cR| [1[2]0|cR| | 1[CcrR[1] - [CR]

I I I | I \/_I
v v v v

algoritm algoritm algoritm algoritm
conversie conversie conversie conversie
alfanumeri alfanumeric- alfanumeric alfanumeric
c- intreg intreg -intreg -real

o o

L] L] L T 1 [T T[]

variabila A variabila B variabila C variabila D

Figura 18.2 Punerea in corespondenta a valorilor citite

Sirurile de caractere sunt delimitate prin <CR>, iar algoritmul de
parcurgere a bufferului determina un astfel de continut al variabilei pointer
incat este transmis ca parametru functiilor de conversie inceputul fiecarei
subzone de buffer care incepe dupa <CR>.

Modul cum este concretizat <CR> ca delimitator de sfarsit de sir si
modul cum este definit descriptorul de format imprima structurii de
parametri ai functiilor de conversie anumite particularitati.

Se observa ca dinamica variabilei pointer este influentata de tipul
operatiei de intrare/iesire. Acest aspect explica de ce este necesara
efectuarea avansului acestuia, cand se alterneaza citiri cu format cu citiri
fara format. La operatii neomogene exista modalitati neomogene de definire
si de tratare a delimitatorilor de sfarsit de sir ca rezultat al activarii tastei
<CR>.

Ceea ce pare simplu in cazul structurilor de date interne, nu devine
mai complicat in cazul structurilor de date externe, atat timp cat sunt
clarificate chestiunile legate de variabilele pointer asociate bufferelor si de
faptul ca o citire fizica efectivd nu inseamna neaparat o citire logica, iar la
scriere se intdmpla acelasi lucru. Prin operatia logica, intelegem actiunea ce
corespunde unei apelari de functie citire/scriere din program.

De exemplu, pentru zona de lungime minima L = 256 octeti, ce este
scrisa/citita la o singura operatie fizica efectiva pe/de pe suport, la scrierea
pe suportul extern a trei variabile de tip articol, A, B si C cu:

Ig(A) = 120 octeti
lg(B) = 110 octeti
Ig(C) = 200 octeti

variabila pointer permite preluarea datelor din structura A, se majoreaza cu
120, preia datele din structura B si realizeaza o scriere fizica pe suport.
Variabila pointer este apoi reinitializatAé si va prelua datele structurii C dupa
care efectueaza a doua scriere fizica. In acest caz celor trei scrieri logice le-
au corespuns doua scrieri fizice.

Exista diferite modalitati de realizare a operatiilor de citire/scriere
dupa cum se folosesc sau nu factori de blocare, se definesc sau nu elemente
de regasire a informatiilor.

Structurile de date externe nu difera mult de structurile de date
interne. Apar unele complicatii care nu sunt majore de altfel, prin aceea ca
volumul datelor este foarte mare si elementele repetitive abunda, ceea ce
conduce la ideea ca structurile de date externe sunt privite ca structuri de
structuri de date interne dispuse pe suport de memorie externa.

Pentru a realiza regasirea intr-un volum de date de dimensiuni
remarcabile, este necesara organizarea, sistematizarea datelor si crearea
acelor elemente indispensabile localizarii, adresarii.

Structurile de date externe sunt contigue, formate din elemente
dispuse in continuarea celorlalte si necontigue, distanta dintre elemente
fiind o variabila aleatoare a carei lege de repartitie este identificabila, dar
care necesita memorarea distantelor, intrucat nu se construieste un
mecanism de generare cu repetare a acestora.

Structurile de date externe se regasesc in cele mai multe cazuri sub
denumirea de fisiere. Cand ating un nivel de structurare prin adrese
suficient de dezvoltat, se formeaza fisiere interdependente, iar in cazul unor
structuri mai complexe se regasesc sub denumirea de baze de date.

In cazul in care continutul de lungime L este tratat distinct, se ia in
discutie conceptul de inregistrare fizica. Se porneste de la faptul ca intr-un
buffer, de regula sunt stocate datele ce corespund unei structuri de tip
articol, ce se recunosc sub denumirea de inregistrare logica sau articol logic.
Scopul este de a face deosebirea intre modul in care se dispun informatiile
pe suportul fizic si modul in care sunt gandite organizarile de date in raport
cu prelucrarile particulare.

Introducerea factorilor de blocare vine sa complice lucrurile, dar sa
imbunatateasca indicele de folosire a zonelor de memorie.

Daca:

L’ = Ig (structura de date de tip articol) <L (18.1)

si daca exista:

L
k{;} (18.2)

unde parantezele drepte inseamna partea intreaga a expresiei, raportul k
reprezinta o expresie mai simplificata a factorului de blocare.

De exemplu, daca definim o structura de tip articol, ce contine
campuri ce conduc la o lungime de 80 octeti si L = 256 octeti:

256
k={§a}41ﬂ=3 (18.3)

In cazul in care k” = 1, pe cei 256 baiti ai bufferului este incarcat un
articol, ce este in fisier. Deci fisierul contine in final n articole fizice si tot n
articole logice, gradul de incarcare cu informatie utila fiind:

%80 10
- £100 = -2 £100 ~ 30% 18.4
&1 w256 D) ° (18.4)

In cazul in care k' = 2:

unde:

[[n/2]+m]=160
n*256

2

100 (18.5)

{0, daca n e numar par
m=

1, daca n e numar impar

Pentru k’ = 3:
ln3Jem]=240 o (18.6)
n*256
Se observa ca:
8:)=8)=¢& (18.7)

Se vorbeste de factorul de blocare optim care se stabileste pentru
fiecare tip de memorie externa si lungime de structura de date de tip
articol, ce urmeaza a fi memorata in fisier.

In continuare, luand in considerare numai aspectele care tin de modul
de stocare a informatiei, strict dependenta de aplicatia programatorului, se
fac urmatoarele specificatii:

se considera fisierul ca structura de date contigua daca
informatiile utile sunt dispuse unele in continuarea celorlalte, fara
baiti care sa le separe;

se considera fisierul ca structura de date regulat necontigua daca
intre toate articolele sau intre grupuri de articole, avand numar
fix, exista baiti nefolositi, in acelasi numar; exista posibilitatea de
a construi o formula de calcul a adresei articolului k, pornind de la
adresa altui articol J;

se considera structuri de date necontigue fisierele ale caror
articole sunt dispuse unele fata de celelalte, la distante care sunt
variabile aleatoare.

Trecerea de la memoria interna la memoria externa, ia in considerare
modul de organizare al fiecarui suport. Daca la nivelul memoriei interne
aceasta este privita ca un vector, in cazul suporturilor externe de informatie
organizate pe piste baitii sunt priviti ca avand dispunerea asemeni
elementelor unei matrice. Linia indica pista pe care se afla baitul, iar
coloana indica pozitia baitului pe pista.

Organizarea pe sectoare determind luarea in considerare a unei
matrice tridimensionale. Pentru fiecare suport realizatorii pun la dispozitie
formulele de calcul ale adreselor cu luarea in considerare a elementelor de
structura a suportului fizic.

Problema fragmentarii informatiilor determina stocarea de date
necesare localizarii partii ce se continua intr-o alta zona a suportului.

Pentru simplificarea prezentarii se considera un suport extern S,
cdruia i se asociaza un model matriceal de dispunere a baitilor. Baitul b
reprezinta baitul al j-lea, aflat pe pista i a suportului. Suportul are n piste,
iar pe o pista se afla m baiti.

Pentru inceput se presupune ca baitii au aceeasi destinatie, respectiv
de a memora informatii utile. Nu exista baiti care stocheaza informatii
privind structura suportului si modul de ocupare a acestuia.

18.2 Criterii de clasificare a fisierelor

Si in cazul clasificarii fisierelor, asemenea datelor interne, exista o
multitudine de criterii, fiecare fisier fiind clasificat cu unul sau mai multe
atribute ce corespund criteriilor de clasificare.

a) Criteriul lungimii articolelor ce alcatuiesc fisierul le imparte in:

- fisiere cu articole de lungime fixa - sunt formate din elemente
avand aceeasi lungime; fisierele sunt asemanatoare vectorilor
ca structuri de date interne; elementele sunt omogene si sunt
dispuse unele in continuarea celorlalte;

- fisierele cu articole de lungimi diferite, dar cunoscute - se
considera m tipuri de articole, avand fiecare lungimea /;, I, ...,
Im; fisierul contine aceste elemente dispuse intr-o anumita
ordine sau in ordine oarecare; in ultima situatie este necesara
memorarea de informatii care sa permita identificarea tipurilor
de articole si lungimea acestora;

- fisiere cu articole de lungime diferitd, dar necunoscuta - ceea
ce se cunoaste este legat de faptul ca lungimile articolelor se
afla cuprinse intre doua limite: lungimile articolelor sunt
variabile aleatoare, apartinand unui interval definit; In mod
obligatoriu, primul camp contine lungimea articolului.

b) Criteriul informatiilor ce definesc regulile referitoare la dispunerea

elementelor, imparte fisierele in:

- fisiere avand ca singur mod de dispunere pozitia articolelor;

- fisiere cu elemente sortate dupa un camp numit cheie a
articolului, in functie de care se face reperarea in fisier.

c) Criteriul informatiilor de localizare a articolelor care alcatuiesc

fisierul;

- figsiere care nu contin informatii asupra pozitiei articolelor -
singura modalitate de a selecta un articol este parcurgerea
tuturor articolelor care il preced;

- fisiere care au definite zone ce contin informatii referitoare la
adresele unor grupe si subgrupe de articole — pentru a identifica
un anumit element se localizeaza grupul si apoi subgrupul de
articole; o data identificat subgrupul, selectarea elementului
cautat este rezultatul parcurgerii articol de articol pana la
gasirea respectivului element;

- fisiere in care elementele contin informatii ce permit conturarea
de liste inlantuite sau arbori pe suporti de memorie externa -
complexitatea legaturilor dintre articolele fisierului determina un
volum de informatie privind adresele articolelor cu care un
element intra intr-o anumita relatie.

d) Criteriul operatiilor ce sunt efectuate de fisiere determina gruparea
acestora in:

- fisiere destinate scrierii datelor;

- fisiere destinate citirii datelor;

- fisiere destinate efectuarii operatiilor de actualizare.

Oricare dintre fisierele unei grupe, in raport cu scopurile

prelucrarii 1si modifica atributele. De exemplu, un fisier care se

creeaza este destinat scrierii datelor. La consultare acelasi fisier
apartine grupei a doua, iar daca naintea consultarii se efectueaza
actualizari, acelasi fisier apartine celei de a treia grupe.

e) Criteriul gestiunii fisierelor ia in considerare existenta unui sistem
de functii de prelucrare care asigura efectuarea operatiilor
specifice lucrului cu fisiere, numit sistem de gestiunea fisierelor.
Acest criteriu imparte multimea fisierelor in:

- fisiere care sunt prelucrate prin apelarea de functii ale unui
sistem de gestiune - rezolva intreaga problematica legata de
organizarea si accesul la date; functiilor sistemului de gestiune
a fisierelor le corespund instructiuni; parametrii instructiunilor
devin parametrii reali ai functiilor sistemului de gestiune;
programatorul abordeaza intreaga problematica numai din
punct de vedere logic al rezolvarii problemei sale;

- fisiere pentru care sunt definite functii primitive de realizare a
operatiilor elementare cu datele destinate suporturilor externe -
programatorului 1i revine sarcina sa gestioneze totalitatea
informatiilor necesare regasirii elementelor ce alcatuiesc
fisierul; pentru programator, fisierul este o masa amorfa de
baiti, avand continut si pozitii; el efectueaza transferuri de baiti
din zone de memorie spre suportul extern, indicand adrese
acestor zone, lungimea zonei si un mod de reparare a fisierului;
exista situatii in care se efectueaza lucru direct in bufferul
asociat fisierului cu care se lucreaza; in acest caz fisierul apare
ca o resursa iar gestiunea acestei resurse este lasata integral la
dispozitia programatorului;

- fisiere care se construiesc si se utilizeaza folosind instructiunile
limbajului de asamblare - programatorul defineste totalitatea
conditiilor pentru efectuarea operatiilor cu fisiere; sunt definite
si incarcate etichetele care sunt scrise; se definesc bufferele si
se gestioneaza; se calculeaza adresele de pe suportul extern
unde vor fi scrise datele; programatorul preia in programele
sale tot ceea ce efectueaza functiile primitive sau sistemul de
gestiune a fisierelor; programul in care apar fisierele gestionate

de programator nu apeleaza alte functii decat cele scrise de
acesta si foloseste numai instructiuni ale limbajului de
asamblare, cel mult seturi de macroinstructiuni.

f) Criteriul organizarii fisierelor, ia in considerare existenta sau

inexistenta unor informatii de regasire a datelor, dupa cum
urmeaza:

fisierele cu organizarea secventiala - succesiune contigua de
articole fara existenta unor elemente de informare, altele decat
delimitatorii de inceput si de sfarsit; daca se ia in considerare
similitudinea acestui mod de organizare cu inregistrarea pe o
caseta a slagarelor unei formatii rock, avem imaginea clara a
tuturor posibilitatilor de lucru cu fisierele secventiale; accesul la
un slagar presupune audierea celor care-| preced; stergerea
unui slagar, altul decéat cel de la sfarsit presupune existenta a
doua casete; inregistrarea unui nou slagar, se face numai dupa
ultimul slagar anterior;

fisierele insotite de informatii de tip index - presupun sortarea
articolelor dupa chei si impartirea acestora in submultimi;
punerea in corespondenta a elementelor din submultimi cu
adresele fizice determina realizarea intr-un fisier a unei multimi
de subfisiere secventiale; cu ajutorul indecsilor se identifica
subfisierul secvential si articolul cautat este preluat dupa ce a
fost localizat prin parcurgerea articol dupa articol a
subfisierului; operatiile de actualizare, vizeaza stergerea de
articole, adaugarea de articole la sfarsitul fisierului sau
subfisierelor, modificarea de campuri, rescrierea de articole si
inserarea de articole; subfisierele sunt masive unidimensionale
contigue, formate din articole; stergerea este o operatie de
dezactivare a elementelor, fara realizarea deplasarii celorlalte
elemente cu o pozitie spre stanga, deci fizic stergerea unui
articol nu se produce, operatia fiind numai la nivel logic, in
sensul ca accesul la date este precedat de un test asupra
caracterului activ sau neactiv al articolului; inserarea de
articole, pentru a mentine criteriul ordonarii elementelor care a
determinat Tmpartirea multimii in submultimi de articole,
presupune realizarea de liste inlantuite; articolul inserat este
dispus intr-o zona disponibila numita folcloric, zona de depasire.
fisiere ale caror articole sunt dispuse aleator pe suport -
cunoscandu-se dimensiunile fisierului se aloca o zona pe
suportul extern printr-o operatie numita preformare; datele
sunt puse in corespondentd printr-un procedeu oarecare cu
adresele unde vor fi scrise; rezultda ca procedeul de punere in
corespondenta este cu atat mai performant cu cat el realizeaza
o dispunere mai uniforma a articolelor in zona rezervata; exista
posibilitatea ca folosind algoritmi de randomizare sa se obtina
elemente ce intra in calculul adresei fizice a inceputului zonei
din suportul extern in care se scrie un articol; pornind de la
imposibilitatea sa se genereze numere diferite care sa
indeplineasca conditia de apartenenta la subintervale, pe
masura ce se scriu articole in fisiere, are loc faramitarea zonei
rezervate; se construiesc functii pentru gestionarea articolelor
care au aceeasi adresa fizica prin calcul; aceste fisiere cu

organizarea aleatoare, permit efectuarea Iintregii game de
operatii, cu conditia ca mecanismul de obtinere a adresei fizice
sa se mentina neschimbat; fisierul organizat aleator apare ca o
structura necontigua in care fiecare element este localizat pe
baza unei formule, avand ca parametru valoarea unui camp ce
intra in structura articolului, camp numit cheia articolului;
numeroasele lucrari care prezinta limbajul COBOL, redau
imagini sugestive ale modului in care se implementeaza filozofia
fiecarui mod de organizare a fisierelor, deci realitatea este alta,
daca se are in vedere organizarea matriceala a suportului si
modul static in multe cazuri de alocare a memoriei externe.

g) Criteriul suportului unde este stocat fisierul imparte fisierele in:

fisiere pe cartele perforate;
fisiere pe banda perforata;
fisiere pe banda magnetica;
fisiere pe suport optic;
fisiere pe disc;

fisiere pe dischete;

fisier in memoria interna.

Prelucrarile moderne, neingradite de restrictiile lipsei de memorie
interna, au condus la citirea unui fisier ca un singur articol foarte mare si
prelucrarea acestuia in memorie. Logic apare o singura instructiune de
citire, deci apelarea o singura data a functiei in realitate au loc:

cf:{l;—f}rm (18.8)

citiri fizice, unde:

cd
Lr
L
m

- citiri fizice din figier;

- lungimea fisierului, data in baiti;

- lungimea unei inregistrari fizice la o citire;

- variabila booleana ce este 0, daca Lf este divizibil prin L si 1 in
caz contrar.

h) Criteriul privind modul de efectuare a operatiilor de intrare/iesire

grupeaza fisierele in:

fisiere de tip stream in care datele la scriere sau la citire sunt
campuri elementare sau alte tipuri structuri de date, constituite
intr-un sir, cu indicarea formatului dupa care se fac mai intai
conventiile si apoi se stabilesc lungimile sirurilor care vor fi
scrise pe suport; fisierul apare ca o succesiune de elemente
oarecare ale caror pozitii sunt deduse, daca se iau in calcul
informatiile pe care le ofera descriptorii de format si locul pe
care fiecare element il ocupa in lista de parametri ai functiei
apelate la scriere; este de dorit ca aceleasi liste de variabile de
la scriere sa fie utilizate si la apelul functiilor de citire, iar
descriptorii de format sa se mentind aceiasi pentru a oferi
succes prelucrarilor;

fisiere de tip record in care datele sunt caracterizate prin
lungime si adresa de inceput; articolele au lungime fixa sau
variabilitatea lungimilor este in cadrul unei multimi formate din
cateva elemente; operatiile de lucru cu fisierele de acest tip nu

sunt in general precedate sau urmate de conversii; operatiile ce
preced calculele sunt lasate la dispozitia programatorului;

De exemplu, fisierul stocurilor de materiale este:

- un fisier de tip record;

- are organizare indexata;

- se afla pe disc;

- este gestionat cu functiile unui sistem de gestiune a fisierelor;

- are articole de lungime fixa;

- se efectueaza toate operatiile de actualizare pe el;

- contine informatii asupra pozitiei anumitor articole;

- articolele sunt identificate dupa codul materialului care joaca rol

de cheie de articol;

- fiecare material are o cheie unica;

- fisierul este sortat crescator.

Astfel, un fisier oarecare este caracterizat inscriind oricare dintre

informatiile ce rezulta din criteriile specificate.

18.3 Fisiere secventiale

Fie multimea de elemente E; E, .., E, oarecare ce corespund
structurilor de date SD;, SD,, ..., SD, definite intr-un program P.

Elementele E;, i = 1, 2, ..., n, sunt siruri de baiti caracterizate printr-
un continut rezultat din initializarea structurilor de date SD;, i = 1, 2, ..., n.
Pe un suport extern se aloca elementelor E;, E;, ..., E, zone de memorie de
lungime:

lg(SD,)+1g(a) (18.9)

fisierul avand in final lungimea:

i=1

De obicei, Ig(a) = 2. Cei doi baiti atasati fiecarui element vor contine
lungimea articolului:

cont(cr)=1g(SD,) (18.11)

Fisierul este caracterizat printr-o adresa a articolelor. Astfel:
adr(E,)= A+1g(a) (18.12)

unde, A reprezinta adresa fizica a primului bait a primului articol caruia i s-a
atasat in fata /g(a) baiti pentru a memora lungimea articolului respectiv:

i—1

adr(E))= A+ (cont(ﬁ,)+1g(5,) (18.13)

Jj=1

sau:

i—1

adr(E,)= A+ 1g(SD,)+i*1g(e) (18.14)

J=1

unde, B« reprezinta grupul de baiti de lungime /g(a) atasat elementului Ex
in fisier. Daca:

lg(SD,)=1g(SD,) =...=1g(SD,) (18.15)
atunci:

cont(f3,) = cont(B,)= ... = cont(3,) (18.16)

caz in care, in eticheta de inceput a fisierului se specifica tipul articolului
lungime fixa. De asemenea, se memoreaza si lungimea, iar /Ig(B«) devine
zero.

Adresa unui element oarecare E;, este obtinuta prin relatia:

i—1

adr(E,)= 4+ lg(sD,) (18.17)

j=1

Cu fisierele secventiale se efectueaza urmatoarele proceduri:

- crearea unui fisier secvential consta in dispunerea elementelor E;,
E, ..., E, pe suport in aceasta ordine;

- consultarea integralda sau partialda a fisierului baleiaza din aproape
in aproape elementele fisierului si se prelucreaza cele care
prezinta interes;

- adaugarea elementului E,, se efectueaza la adresa:

adr(E,))=adr(E,)+1g(S,)+1g(a) (18.18)

ceea ce pune in evidenta ca adaugarea se face numai la sfarsitul
fisierului;

- interclasarea a doua fisiere;

- sortarea fisierelor, care consta in obtinerea unui fisier in care
articolele au o astfel de dispunere incat pentru un camp x exista
relatia:

cont (E;.x) > cont (Ez.x) > ... > cont (En.x) (18.19)
daca sortarea s-a facut descrescator, sau:

cont (E;.x) <cont (E;.x) <... <cont (E,.x) (18.20)
daca sortarea s-a facut crescator.

Intrucat se lucreazd in cele mai multe cazuri cu fisierul in totalitatea
lui, nu este justificata memorarea de informatii pentru anumite articole.

Explorarea fisierelor secventiale corespunde unei structuri de date
contigue, asemeni unui vector de structura sau a unei insiruiri de diferite
structuri, cu posibilitatea calculului adresei unui element oarecare:

adr (suc (E;)) = adr (E;)) + Ig (SD;) + Ig («) (18.21)
adr (pred (E;))) = adr (E)) - Ig (SDi-1) - Ig («) (18.22)
Se spune ca fisierul este inchis daca:

limsuc’"(El.):En (18.23)

m—»o0
Se spune ca fisierul este deschis daca:

lim pred™ (E,)=E, (18.24)

m—>0

O astfel de abordare determina continuarea prelucrarii chiar daca
exista tentative de a inchide un fisier deja inchis sau de a deschide un fisier
deja deschis.

Apare problema privind parametrii functiei de deschidere. Daca sunt
luati in considerare parametrii primei deschideri, problema este rezolvata,
tentativele de deschidere a unor fisiere deja deschise fiind inefective.

Intrucat existd formule de calcul pentru adresele fiecdrui element din
submultimea E;, E,, ..., E, nu se justifica construirea unui vector a adreselor
in fisier a;, az, ..., @, pentru aceste elemente.

Sistemele de operare evoluate gestioneaza inchiderea fisierelor Ia
inchiderea executiei programelor.

18.4 Fisiere secvential - indexate

Se considera o multime de elemente E;, E,, .., E, generate dupa
structura SD si un camp x astfel incat:

cont (E;.x) <cont (E;.x) <... <cont (E,.x) (18.25)

deci, sirul elementelor este sortat crescator dupa campul x, care joaca rol
de cheie a articolelor in structura SD de generare.

Elementele de sortare vor fi memorate, fiecare ocupdnd o zona de
lungime:

lg(SD)+1g(y) (18.26)

unde, y reprezinta o zonad in care este memorata o adresa fizica de pe
suport, tinand seama de structurarea contigua a suportului.
Fisierul are un fond informational de lungime:

L, =nx[lg(y)+1g(sD)] (18.27)

Se construieste multimea perechilor:
(cont(E.x).a;) (18.28)

a cheilor si adreselor articolelor ce intra in componenta fisierului. Se
calculeaza:

n

Z(cont(Ei_x)—;) (18.29)

62 — _i=l

n

si rezulta o imprastiere suficient de mare care sa reduca sansele gasirii unei
formule de calcul a adresei fizice a unui articol, folosind strict ca informatie
cheia acestuia.

Daca se accepta ideea utilizarii unui arbore binar cu 4 noduri
terminale, multimea elementelor E;, E, ..., E, este impartita in 4 subsiruri,
avand un numar aproape identic de elemente, retinand adrese si cheile
elementelor ce delimiteaza fiecare subsir de articole:

(cont(Ey.x), ay), Jj=1, 2, 3, 4, k=1, 2,.., n (18.30)
unde k; <k, <ks <Kky.
Perechile de delimitare ale inceputului de subsir, se obtin astfel:
- pentru primul subsir:
0, = (cont(E, x),a,) (18.31)
- pentru al doilea subsir:
0, = (cont(EHm .x),am+1) (18.32)

- pentru al treilea subsir:

0, = (cont(Emm .x),aZmH) (18.33)
- pentru al patrulea subsir:

0,= (cont(EMm .x), 341) (18.34)

Perechile pentru delimitarea sfarsitului pentru fiecare din cele 4
subsiruri sunt:

P, =(cont(E, x),a,)

P, =(cont(E,, x).a,,) (18.35)
P, = (cont(E3m x)’a3m)

P, = (cont(En --x)aan

S-a considerat ca fiecare subsir are m elemente, cu exceptia ultimului
sir care are 1, 2 sau 3 elemente mai putine.
Setului de date i/ se asociaza arborele binar:

(Q1, Py)

/\

(Qi, P2) (Qs, Py)

(Qi, Py) (Q2, Py) (Qs, Py) (Qq, Py)

Figura 18.3 Structura setului de date i

Daca, de exemplu, fisierul sortat este organizat secvential si se
doreste citirea articolului penultim, care are cheia 7233, in mod normal
trebuie sa fie citite cele n-2 articole care il preced. Daca insa fisierul este
inzestrat cu aceasta informatie pe care o contine arborele binar cu 4 noduri
terminale, inspectarea nodului radacina permite vizualizarea faptului ca
articolul cautat cu cheia 7233 este in fisier, adica:

cont (E;.x) < 7233 < cont (Ej.x) (18.36)
Intrucat:
733> cont (E .x) +cont (E,.x) (18.37)
2
rezulta ca se parcurge pe nivelul inferior, nodul din dreapta.
Intrucat:
7933 > cont (E, ,.x)+cont(E, .x)

) (18.38)

rezultd ca se parcurge pe nivelul inferior, nodul din dreapta.

Odata ajungand pe ultimul nivel al arborescentei, se retin adresele
asm+1 Si @, Si se baleiaza secvential subfisierul delimitat astfel. Deci, se vor
baleia mai putin % din totalul elementelor fisierului.

Pentru construirea arborilor binari asociati exista numerosi algoritmi
de partitionare a fondului informational. Important este ca numarul
cautarilor secventiale sa fie cat mai redus. Trebuie realizat un echilibru intre
numarul de nivele ale arborelui binar si numarul subfisierelor, deoarece
cresterea numarului de subfisiere conduce la cresterea duratei de acces la
acestea din cauza parcurgerii unui numar prea mare de noduri in arborele
binar.

In cazul in care se doreste inserarea unui articol E; intr-un astfel de
fisier se identifica pozitia lui, astfel incat:

cont (Ex.x) <cont (Ej.x) <... <cont (Ex+1.x) (18.39)

In acest caz, articolul ca atare este memorat intr-o zond rezervatd a
fisierului, legatura cu celelalte articole efectuandu-se prin:

cont(yk) = adr(E ;)

conly)=airs,,) (1840

ce corespunde unei inserari de elemente intr-o lista.

La un numar mare de inserari, parcurgerea listelor reduce
performanta programului de exploatare a fisierului secvential - indexat.
Acestea justifica trecerea la reorganizarea fisierului. Prin reorganizare se
intelege crearea unui nou fisier, in care elementele se dispun intr-o aceeasi
zona fara a mai exista informatii de legatura, ca in cazul in care ar fi
dispersate pe suport.

La reorganizare, se construieste un nou binar al indecsilor. Utilizarea
arborilor binari are aici numai un caracter exemplificativ. Tipul de arbore
depinde in principal de imprastierea cheilor in intervalul pe care sunt
definite. Informatiile privind arborele asociat tabelei de indecsi se stocheaza
pe suport si face parte din fisier.

Pentru o parcurgere mai rapida, in cazul in care este posibil,
informatiile aferente structurii arborescente a indecsilor se incarca in
memoria internd si se lucreaza cu ele folosind functiile de parcurgere ale
unui arbore.

In limbajele precum C si C++, fiecare programator implementeaza
algoritmi proprii pentru organizarea secvential - indexata, iar prin
comparatia comportamentului lor statistic cu alti algoritmi existenti, sunt
dezvoltati sau abandonat;i.

18.5 Fisiere aleatoare

Sunt acele fisiere care ocupa o anumita zona din memoria externa si
ale caror elemente nu sunt reperate decat prin adresa fizica pe care o au pe
suportul extern.

Intrucat abordarea fisierelor random, dep&seste prin amploarea
fundamentarii acest cadru, se considera oportuna prezentarea unui caz
particular de fisiere ale caror adrese ale elementelor se calculeaza in functie
de pozitia pe care acestea o au, tot astfel cum se procedeaza in cazul
masivelor unidimensionale.

Se considera functia poz(E,) care indica pozitia elementului E, in
sirul de articole.

Astfel, daca multimea de elemente E;, E, .., E, are exact n
elemente:

1< poz (Ej))< n (18.41)

poz (succ (E;)) = poz (Ej) + 1 (18.42)

poz (pred (E;)) = poz (E;) - 1 (18.43)
Din cele doua relatii rezulta ca:
poz (succ (E;)) - poz (pred (E;)) = 2 (18.44)
sau:

B poz(succ(E ;)+ poz (P” ed (E j »)

poz(E,)= : (18.45)

Cu aceste definitii:
adr(E;) = A + (poz(E) - 1) *Ig(E;) (18.46)
se construieste sirul de perechi:
(cont(Ej.x), poz(E;)) (18.47)
care permite, in cazul in care se stabileste o relatie de forma:
poz(E;) = p (cont (Ej.x)) (18.48)

regasirea elementului dupa pozitie pe care o are in fisier.

In cazul in care nu se identifica functia po(), elementele cont(Ej.x), j =
1, 2, ..., n, vor fi memorate intr-o structura omogena unidimensionala si
pozitia elementului in care este memorata aceasta informatie, corespunde
pozitiei articolului in fisier.

18.6 Fisiere interdependente

Interdependenta fisierelor, este privita sub doua aspecte si anume:
interdependenta la nivelul articolelor wunui fisier si, respectiv,
interdependenta la nivelul a doua sau mai multe fisiere.

Se considera doua fisiere:

- fisierul PRODUSE, ale carui elemente sunt generate dupa structura
PROD, cu campurile cod produs, denumire produs, stoc, unitate de
masura, numar materii prime care intra in componenta sa si
materiile prime, gama de operatii;

- fisierul MATERIALE, ale carui elemente sunt generate dupa
structura MAT, cu campurile cod material, denumire material,
unitate de masurd, cantitate existenta in stoc, pret unitar.

Daca dorim sa aflam costul materiilor prime necesare realizarii unui
produs, citim din fisierul PRODUSE articolul corespunzator respectivului
produs si rand pe rand preluam codurile materialelor ce intra in componenta
sa. Pentru fiecare material ce intra in componenta produsului, citim cate un
articol din fisierul MATERIALE.

Sa ne imaginam ca fisierele sunt secventiale. Rezolvarea este extrem
de greoaie, pentru ca accesul la materiale este obtinut numai prin baleierea
de la inceput a fisierului MATERIALE, daca materialele nu au fost memorate

in ordine crescatoare dupa codurile acestora in articolul din fisierul
PRODUSE si daca fisierul MATERIALE nu este sortat.

Problema devine eficienta daca, in locul codurilor materialelor,
dispunem de adresele articolelor in fisierul MATERIALE, dar reorganizarea
fisierului de materiale, ar atrage dupa sine actualizarea adreselor pentru
materiale din componenta fisierului PRODUSE.

Daca se lucreaza cu fisiere indexat - secventiale, rezultatul este bun,
iar daca se folosesc pozitiile materialelor dintr-o lista, performanta devine si
mai buna.

Acest tip de dependenta este unidirectionala intre doua fisiere.
Numarul de legaturi dintre un articol din fisierul PRODUSE si fisierul
MATERIALE este variabil, strict dependent de numarul de materiale ce intra
in componenta produsului cu care articolul din fisierul PRODUSE este pus in
corespondenta.

— T
v v
PRODUSE MATERIALE
Cod mat.1 ..
Produsul x | \/(: od mat. 2 ..
2Cod mat. 3. ..
\i/ ‘\I:\ Cod mat. 4 ..
Cod Denumire | UM Pret, Nr. Cod Cod Cod Cod
produs | produs mat. mat. mat. mat. mat.
4 1 2 3 4

Figura 18.4 Legatura intre fisierele PRODUSE si MATERIALE

Este de dorit ca fisierele PRODUSE si MATERIALE sa se realizeze intr-
o prima etapa cu codurile materialelor si langa ele sa fie rezervate campuri
pentru memorarea adreselor fizice ale articolelor ce corespund in fisierul
MATERIALE respectivelor coduri.

In a doua faza, un sistem de programe identifica pozitia fiecarui
articol si incarca in fisierul PRODUSE in zonele disponibile de adresa chiar
adresa articolului al carui cod se afla in imediata sa vecinatate.

Reorganizarea fisierelor pe fondul definirii codurilor nu implica decat
reincarcarea de adrese, lucru ce se efectueaza automat.

Fisierele interdependente privesc legaturi intr-un singur sens, de la
fisierul de produse catre fisierul de materiale. Se construiesc si legaturi in
sensul opus, pentru fiecare articol al fisierului de materiale, indicandu-se in
care dintre produse, este folosit respectivul material. Este o informatie
necesara, dar care lungeste mult articolul MAT si de aceea, in acest caz este
putin utilizata o astfel de abordare.

Daca totusi se doreste si o legatura dinspre fisierul MATERIALE catre
fisierul PRODUSE, realizarea se efectueaza in acelasi fel, parcurgdndu-se tot
doi pagi.

In final se vor obtine legaturile dintre articole, ilustrate in figura 18.5.

T Y

v v
MATERIALE PRODUSE
x1 yl
x2 v2 <
x3 y3
x4 y4

Figura 18.5 Legaturile dintre articolele fisierelor MATERIALE si PRODUSE

Rezultd ca produsul ys, utilizeaza materialele x;, x> si x4, iar
materialul x3 este prezent in compozitia produselor y; si y».

Articolele fiecarui fisier raman in continuare independente unele de
celelalte. Ele sunt prelucrate separat, singurele combinatii fiind cele legate
de posibilitatea de a permite calculul necesarului de materiale, pentru
realizarea de k produse de tipul y3 si de a stabili daca stocurile materialelor
X1, X2, X4 sunt suficiente.

La serviciul aprovizionare, prin parcurgerea fisierului MATERIALE, se
observa care sunt viitoarele cereri din materialul xs.

Se observa ca o astfel de constructie este limitativa, dar cu o serie de
artificii de consultare a celor doua fisiere se obtin si alte regrupari de date.

O privire de ansamblu pune in evidenta ca pastrarea articolelor din
fiecare fisier ca entitati independente reduce diversitatea combinatiilor de
date, care pentru un manager competent, reprezinta o sursa sigura de
fundamentare a deciziilor.

18.7 Fisiere inlantuite

Apar intrebarile: structurile dinamice cu multe elemente sunt
memorate pe suport extern? Se implementeaza mecanisme de inlantuire in
memoria externa? Cum se genereaza legaturile exprimate prin adrese dintre
elementele deja alocate dacda se specifica numai cheile de identificare a
acestora?

Raspunsurile nu sunt simple, dar au fost date cu multi ani in urma,
obtinandu-se functii de creare si prelucrare a fisierelor inlantuite.

Se considera ca pentru realizarea unui produs, este necesara
parcurgerea unor etape, efectuarea unor operatii de prelucrare intr-o
anumita succesiune, numita gama de operatii.

Descrierea unei operatii, contine informatii precum:

- codul operatiei;

- denumirea operatiei;

- durata de executie;

- calificarea ceruta;

- tipul de meserias care o executa;

- utilajul necesar;

- scule necesare;

- plata pentru efectuarea operatiei;

- operatia precedenta;

- operatia urmatoare;

La executia programului de incarcare a fisierului gamei de operatii, se
introduc rand pe rand, datele ce urmaresc sablonul descris mai sus. Pentru
primul articol al unei game, operatia precedenta este NULL, iar pentru
ultimul articol din gama, operatia urmatoare este de asemenea NULL.

Sistemul de creare a fisierului cu acest tip de inlantuire adauga doua
campuri ce vor fi initializate cu adresele ce corespund pozitiei articolelor
pentru operatia precedenta si pentru operatia urmatoare din gama de
operatii.

Cate game de operatii sunt definite intr-un proces de productie,
atatea liste dublu inlantuite vor fi realizate.

Prin parcurgerea unui fisier cu articole inlantuite, se determina care
este necesarul de specializari si care sunt salariile ce trebuie platite, daca
sunt realizate k produse de tipul x, pentru care este necesara efectuarea
operatiilor din gama de operatii cu un cod specificat.

Fisierul gamei de operatii, va avea articole ce corespund gamelor G;,
G, ..., Gy, care la randul lor contin operatiile O;;, O;5, ..., Oki, ..., 021, Oz,
ers Ok2; +2ey Oni, Onz, vvy Ok

NULL|| G] 011 ||

Gama de [
operatii | G On |

Gy <—|

NULL| G, O, |
Gama de \l/_ l : !

operatii >
Gn
|—>

Figura 18.6 Structura fisierului gamei de operatii

l G, Ok, |

O altd situatie, este aceea corespunzatoare memorarii pe suport
extern a structurilor arborescente.

Se considera ca la o intreprindere se realizeaza N produse P;, P, ...,
Py. Fiecarui produs i se asociaza o structura arborescenta, deci vor exista N
noduri radacina si N noduri terminale.

M=) K, (18.49)

i=1

unde K; reprezinta numarul de materii prime, repere sau subansamble
nerealizate in intreprindere si care intra in componenta produsului P..

Se pune problema memorarii celor N arborescente, cu conditia
realizarii cel putin a unui nivel de redundanta controlat, daca minimizarea
este dificil de realizat sau chiar nu este dorita.

Nodurile reprezinta produse, subansamble, repere sau materii prime,
despre care trebuie cunoscut:

- cod de recunoastere, respectiv cheia;

- denumire;

- unitate de masurg;

- cantitate necesara, respectiv greutate specifica;

- pret unitar;

- gama de operatii;

- cod reteta de fabricatie;

- caracteristici de performanta standard,;

De asemenea, se impune stabilirea pozitiei in arborescenta, indicand
nodul parinte, nodul descendent si nodul vecin din dreapta.

Aceasta multitudine de date, se grupeaza in doua categorii:

- date pentru descrierea componentei ce corespunde unui nod;

- date pentru descrierea pozitiei nodului in arborescenta.

Celor doua categorii de date le vor corespunde fisiere descriptive si
fisiere de legaturi.

Fisierele descriptive, au articole formate din doua tipuri de date:

- date ce se completeaza de catre utilizatori cu acele elemente ce
caracterizeaza un produs, un ansamblu, subansamblu, reper sau
materie prima:

- date ce se completeaza de un sistem de gestiune a fisierelor
inlantuite si care contin adrese de articole sau identificatori de
marcare a finalului inlantuirii.

De exemplu, pentru produsul A care este format prin asamblarea
reperelor B, C, D si E in ordinea mentionata in figura 18.7 fisierul descriptiv,
contine 3 articole ce corespund elementelor A, B, C, D si E, iar fisierul de
structura descrie legaturile dintre elementele A, B, C, D si E, conform
arcelor ce definesc gradul de tip arbore. Deci, acest fisier are articolele: (A;
B), (A;C), (C;D), (C;E).

Figura 18.7 Structura componentelor produsului A

Indicarea acestor articole nu necesita o anumita ordine. Analiza
perechilor este aceea care permite identificarea tuturor elementelor
necesare completarii campurilor de adresa din fisierul descriptiv.

Astfel, intr-o pereche (x; y) rezulta ca pentru nodul x, nodul y este
descendent, iar pentru nodul y nodul x este parinte.

Nodul A este parinte pentru nodurile B si C, dar el nu apare in nici
una dintre perechi ca descendent, deci A este nod rddacing. In articolul din
fisierul descriptiv ce corespunde produsului A, un camp este completat cu
NULL.

Nodul B nu apare ca parinte in nici o altd pereche, deci nu are
descendenti. Se completeaza si un camp din articolul fisierului descriptiv ce
corespunde reperului B.

Pentru regasirea rapida a informatiilor, inainte de a completa
campurile din fisierul descriptiv, vor fi completate in fisierul de legatura,
campurile ce corespund adreselor fizice pe care le ocupa articolele fisierului
descriptiv.

Astfel, legaturii corespunzatoare perechii (A; B) i se asociaza in
fisierul de legatura, articolul:

lcod A |cod B | adr (articol A) | adr (articol B) |

Figura 18.8 Structura articolului in fisierul de legatura

Daca este analizat un produs, problema nu difera prea mult cu modul
de reprezentare a structurilor dinamice in memoria interna. Daca insa
fisierul descriptiv contine totalitatea nodurilor ce descriu cele N produse care
se realizeaza, iar fisierul de legaturi are atatea elemente cate arce au cele N
arborescente dupa care se descompun produsele P;, P, ..., P,, avem o
imagine mai exacta a ceea ce inseamna reprezentarea in memoria externa
a datelor ce formeaza articole interdependente si care in final, dau fisierele
inlantuite.

Obtinerea controlului asupra redundantei revine la a deplasa
informatii privind adresele din articolele fisierului descriptiv in fisierul de
legatura. Daca se minimizeaza redundanta, in sensul ca fisierul de produse
contine repere si materii prime descrise o singura data, reconstituirea
arborescentei se obtine prin construirea tuturor adreselor de regasire nu in
articolele din fisierul descriptiv, ci in articolele de legatura.

Problema traversarii unui arbore se mentine din punct de vedere al
semnificatiei, dar in cazul fisierelor inlantuite revine la a utiliza, alternativ,
informatii din fisierul de legaturi si din fisierul descriptiv.

Operatiile care sunt specifice structurilor arborescente construite in
memoria interna sunt definite si in cazul arborescentelor de pe mediile
externe. Modificarile vizeaza pointerii, al caror continut reflecta adrese ale
suportului extern.

Functiile specifice pentru lucru cu fisiere inlantuite au ca parametri
toate elementele necesare stergerii unui nod, modificarii unor legaturi sau a
unor campuri. Adresele care apar la descrierea legaturilor dintre noduri
permit parcurgerea arborelui de la radacina spre baza sau de la orice nod
catre baza sau de la orice nod catre radacina.

Cand se proiecteaza o anumita structura, nu numai lista sau arbore,
trebuie ca programatorul sa se familiarizeze cu ideea ca oricarui arc i
corespund doua adrese. El trebuie sa gaseasca algoritmi pentru incarcarea

in cdmpuri, pe care are obligatia sa le defineasca, a acestor doua adrese.
Programatorul este obligat sa cunoasca functiile care intorc adresa fizica a
inceputului zonal de memorie pe care o ocupa un anumit articol.

Daca sistemele de gestiune a fisierelor inlantuite realizeaza aceste
operatii pentru structuri arborescente sau pentru liste, cazuri particulare de
arborescente, in cazul structurilor oarecare programatorul trebuie sa-si
construiasca functii proprii. El are grija sa rezerve zone pentru adrese, Isi
defineste structura de date adecvata descrierii structurii produsului. De
fiecare data, va avea grija ca ceea ce realizeaza sa nu genereze ambiguitati
sau sa conduca la reprezentari ce nu concorda cu structura pe care doreste
sa o implementeze in fisiere.

18.8 Fisierele bazei de date

Din punctul de vedere al modului de structurare a datelor, bazele de
date reprezintda o forma mai generala de reprezentare a datelor, care
reflecta caracteristici ale elementelor omogene ce definesc mai multe
multimi.

Fie multimile M;, M,, ..., My, formate fiecare din n;, n, ..., Nk
elemente, asa fel alese incat caracterizarea completa a unui element x; e
(M;) este efectivd dacd sunt prezentate datele dj;, dj, ..., di, unde dy €
(M)

In plus, fiecare multime are elementele structurare dupa o anumita
reguld. Punerea in corespondenta a elementelor celor kK multimi, conduc in
numeroase situatii, ca unui element din multimea M; sa-i corespunda mai
multe elemente din multimea M; sau mai multor elemente din multimea M;
sa le corespunda un singur element din multimea M.

Se observa ca necesitatea de a separa informatiile in fisiere distincte
este data in principal din dorinta de a diminua redundanta dintr-un fisier, pe
de o parte, si pentru a permite noi facilitati de exploatare a structurilor de
date, pe de alta parte.

In continuare, se considera un exemplu clasic, foarte frecvent utilizat
in descrierea principiilor si fundamentelor de realizare a bazelor de date.

Fie multimea M; a persoanelor dintr-o localitate, care se afla intr-una
din relatiile:

X este vecin cu y
x este fiul lui y

x este tatal lui y
X este sotia lui y
X este sotul lui y

Un individ al colectivitatii, este descris prin:

- nume;

- adresa;

- raport cu alti indivizi, respectiv vecini, rude;
- tip automobil/marca;

- culoare automobil,

- an cumparare;

- loc de munca.

Fie multimea M, multimea automobilelor, in care elementele se afla in
relatiile:

marca x este produsa de y
marca x are capacitate z
capacitatea z are consumul specific w

Un autoturism este descris prin:

- nume producator;

- model;

- culoare;

- an fabricatie;

- capacitate;

- tip combustibil;

- caracteristici motor;

- consum la 100 km.

Fie M; multimea locurilor de munca, formata din elemente
caracterizate prin:

- nume institutie;

- capital social;

- tip institutie;

- numar salariati;

- nume compartiment;

- nume meserii acceptate la compartimentul respectiv;

- nume lucratori din compartiment.

Fie M, multimea impozitelor care se aplica mijloacelor de transport,
formata din elementele:

- limita inferioara a capacitatii cilindrice;

- limita superioara a capacitatii cilindrice;

- impozit;

- taxa CASCO pentru primii 3 ani de functionare;

- taxa CASCO pentru masinile cu vechime cuprinsa intre 4 - 10 ani;

- taxa CASCO pentru masinile cu vechime mai mare de 10 ani.

Desi se discuta foarte mult, cea mai costisitoare etapa din activitatea
de manipulare a bazelor de date o reprezinta incdrcarea acestora.

In cazul de fata, datele nu sufera o uzura morald rapida pentru ca
vizeazd indivizii dintr-un cartier sau bloc. in cazul in care fenomenul are o
dinamica accelerata, se observa ca la terminarea incarcarii 60 - 80% din
date sunt uzate moral si baza de date practic este inoperanta.

In cazul considerat, cele patru multimi conduc la date ce alimenteaza
baza de date si se trage concluzia ca in continuare ea este complet
incarcata.

Pentru a vedea puterea de prelucrare pe care software-ul bazei de
date o are, exemplificam cateva cereri:

- listarea locurilor de munca ale membrilor familiei lui x;

- listarea proprietarilor de autoturisme cu culoarea z;

- listarea tuturor celor care lucreaza la locul de munca w si au

autoturisme pentru care platesc taxa CASCO cuprinsa in intervalul
[a, b];

- exista o relatie intre capitalul social al firmelor si uzura morala a

autoturismelor pe care le au salariatii lor?

- listarea proprietarilor care platesc un impozit mai mare decat C lei

si taxa CASCO mai mare decéat D lei;

- exista meseriasi de tipul z care au masini de tipul u absolut noi si

care au vecini in aceeasi situatie?

Daca toate datele despre un individ, sunt inregistrate intr-o structura
cuprinzatoare, care contine elementele de descriere ale celor patru multimi,
se observa o multitudine de repetari, ceea ce conduce de fapt la regruparea
informatiilor. Cele 4 multimi nu sunt un dat, ci sunt rezultatul unei analize a
modului in care sunt sistematizate si concentrate datele.

Pentru elementele din multimea M; se asociaza arborescenta:

persoana x
familie vecini
. - vecinul vecinul vecinul vecinul
sotie copu din fata din spate din stanga din dreapta
copilul Y1 | copilul Y10

Figura 18.9 Arborescenta asociata elementelor multimii M;

Pentru elementele multimii M, se asociaza arborescenta din figura

18.10.
Producator
Marca 1 Marca 2 Marca n
Model Culoare An fabric.

Figura 18.10 Arborescenta asociata elementelor multimii M,

Si pentru elementele multimii M3 si M, se asociaza, de asemenea,

arborescente.

Deci, daca fiecare multime este concretizata in cate un fisier,
articolele in cadrul fiecarui fisier sunt legate intre ele, functie de structura
arborescentei asociate.

Baza de date presupune atat legaturi intre articolele fiecarui fisier, cat
si legaturi intre fisiere.

Se ridica intrebarea: pentru a raspunde la toate solicitarile, este
necesara constituirea unor structuri de adrese; toate structurile de adrese
sunt create de la inceput sau acestea se creeaza pe masura ce necesitatile
de prelucrare impun acest lucru?

In fisierul persoanelor, cAmpul corespunzdtor autoturismului contine
si adresa articolului ce corespunde marcii si culorii autoturismului.

Daca intereseaza listarea proprietarilor de masini de culoare z se,
procedeaza astfel:

- se construieste sirul:

S = (51, So ... Sn) (1850)

unde s; este adresa articolului pentru descrierea autoturismului al carui
proprietar este persoana a; din fisierul de persoane.
- din figierul autoturismelor se extrage subsirul:

P = (p1, P2, .- Pn) (18.51)

al adreselor articolelor ce corespund autoturismelor de culoare z:
PNS = (Ski, Skz, - Skm) (18.52)

ceea ce iInseamna ca persoanele ale caror inregistrari ocupa pozitiile k;, ko,
... km cu masini de culoare z si afisarea:

cont (ref (ki) . nume), i =1, 2, ..., m (18.53)

conduce la tabelarea numelor de persoane care poseda masini de culoare z.

Interogarea unei baze de date revine la constituirea mai multor siruri,
din fiecare multime cate unul. Numarul de siruri maxim este de regula egal
cu numarul multimilor de articole definite.

Astfel, daca se doreste listarea tuturor celor care au locul de munca w
si au autoturism pentru care platesc o taxa CASCO cuprinsa in intervalul [a,
b], se procedeaza astfel:

- se construieste sirul adreselor persoanelor care au locul de munca

w:

(v j = const (w.adresa_persoana;)), j =1, 2, ... n (18.54)
- se construieste sirul capacitatilor cilindrice:
(C1, Co, ... Cp) (18.55)

al autoturismelor, insotite de adresele articolelor din fisierul asociat multimii
M,, ce corespund autoturismelor pentru capacitatile identificate:

m; m;... Me (18.56)

De regula, e = h, intrucat exista mai multe marci de masini cu
aceeasi capacitate cilindrica.

Prin analiza continutului fisierului M,, rezulta ca autoturismele pentru
care se plateste o taxa CASCO cuprinsa in intervalul [a, b], sunt cele care
au capacitatile cuprinse intre:

[es, pi] (18.57)
[z, p2] (18.58)

Aceste limite conduc la filtrarea elementelor multimii C;, C,, ... Cp,
astfel incat rezulta submultimea adreselor:

m’={m;, my,..my,} (18.59)

de requla p < e.
Se construieste sirul de adrese:

S, = (vi/0 < 1 <k; cont (y.i.adresa_autoturism) e m’) (18.60)
Scrierea elementelor sirului:
(cont (yu->nume_persoana)), u=1,2, .., w (18.61)

rezolva cererea formulata initial.

In exemplul dat, s-a procedat la utilizarea de variabile pointer. Pentru
a face deosebire intre pointerii folositi la referirea elementelor din memoria
interna si pentru a evita confuziile ce apar folosind conceptul de pointer spre
fisier, intrucat este deja concentrat tipul de data FILE. In continuare se
utilizeaza conceptul de pointer extern.

Fiind dat un suport extern al caror baiti au adresa cuprinsa intre
valorile [A,B]JNN, A < B si A, B € N, variabila v se spune ca este pointer
extern daca si numai daca:

cont (v) e [A, B]N N (18.62)

Pozitionarea citirii este de fapt atribuirea sau modificarea continutului
unei variabile de tip pointer extern, asa fel incat ea sa contind adresa
baitului de unde incepe citirea/scrierea.

In enuntul problemei, M;, M, M; si M, reprezintd fisiere, adica
variabile pointer care sunt initializate cu adresele baitilor de unde incepe
alocarea memoriei externe pentru fiecare din cele patru fisiere. Daca se are
in vedere ca fisierul are si o eticheta de inceput de lungime, cont(M;) + «
reprezinta adresa primului articol din fisierul M,.

Presupunand ca fisierului M; i se aloca o zona contigua, cuprinsa intre
adresele [A; B;], rezulta ca:

cont (M) = A; (18.63)

cont (6;) =B;-1g (SD;) (18.64)

unde & reprezinta adresa ultimului element de structura SD; al fisierului M;
care are o eticheta de sfarsit de fisier de lungime g.

Revenind la fisierele interdependente, fisierele inlantuite, se observa
ca structurile de date ce se asociaza fisierelor, pe langa informatiile utile
date de programator, se definesc inca multe campuri de tip pointer extern
care asigura traversarile prin structura externa pe timpul executiei.

Folosind definirea pointerilor extern, locul de munca w este identificat
prin pointerul extern pw ce corespunde adresei articolului respectivului loc
de munca.

Multimea m;, m,, ... me, reprezinta valori ale variabilei pointer extern
r, asociat fisierului M5:

m = {r; / cont (r;->capacitate) € {Ci, Cs, ... Cn}}, i <j <nrr (My) (18.65)

unde nrr() este o functie care defineste numarul de articole existent intr-un
figier:

nrr: (Fi, F ... Fe} =N (18.66)

unde F este multimea fisierelor, date prin valoarea initiala a pointerilor lor
externi:

m’ = { m; /cont (m;-> capacitate) e [a;, 1] U [az, po] } (18.67)

Selectarea elementelor reprezinta construirea de siruri de adrese si
apoi prin operatii de reuniune, intersectie, se obtin sirurile de elemente care
prezinta rezolvarea problemei.

Utilizarea bazelor de date reprezinta un domeniu al informatiei
aplicate. Construirea de sisteme de gestiune a bazelor de date este o
preocupare de mare importanta pentru toti realizatorii de software, iar
elementele prezentate definesc doar o serie de trasaturi generale ale
filozofiei bazelor de date.

Fiecarui mecanism particular ii corespund reguli precise de definire,
initializare si modificare a pointerilor externi ce se asociaza fiecarui articol.

De mentionat ca in spatele oricarei cereri de informatie furnizata de
utilizatorul bazei de date, se afla pointeri externi, care in unele cazuri sunt
deja initializati si se folosesc ca atare, iar in alte cazuri, sunt numai definiti
si 1si Incarca continutul in functie de cerere.

Exista situatii cand pentru a rezolva o problema, se definesc noi
pointeri externi si se activeaza proceduri de initializare, in concordanta cu
problema de rezolvat. In acest caz se creeaza noi legaturi intre elemente,
cu noi posibilitati de selectare a informatiilor din baza de date.

Statistic, diversitatea de fisiere face ca utilizarea unora sa fie in
anumite cazuri mai eficiente decat a altora. Experienta fiecarui programator
este cea care hotaraste tipul de fisier cu care se lucreaza pentru fiecare
aplicatie.

La alegerea tipului de fisier cu care se lucreaza, concura o serie de
factori din care se enumara:

- numarul de elemente care alcatuiesc fisierul;
tipul prelucrarilor: integrale, dupa o cheie, prin selectie;
frecventa si tipul operatiilor de actualizare;
durata impusa de prelucrare si necesitatea sortarii datelor;

- timpul disponibil pentru elaborarea programelor;

- costuri de elaborare si utilizare;

- sistemul de calcul disponibil;

- sistemele de gestiune a fisierelor cunoscute si disponibile.

Alegerea tipului de fisier si comportamentul algoritmilor implementati
pentru regdsirea informatiilor, sunt rezultatul unei analize statistice a
datelor, inregistrate prin urmarirea in timp a comportamentului la
prelucrare.

	cont (v) ([A, B] ∩ N (18.62)

