
18. FIŞIERE

18.1 Structuri de date externe

Masivele, listele şi arborii binari, sunt structuri de date interne, prin

faptul că se află în memoria internă a unui sistem de calcul. În momentul în
care aceste structuri sunt stocate în memoria externă – pe discuri, benzi
magnetice, dischete, compact-discuri acestea sunt numite structuri de date
externe.

Memoria internă a unui calculator este imaginată ca un şir ordonat de
baiţi. Fiecare bait se defineşte prin adresă şi prin conţinut. Memoria externă
este imaginată, de asemenea, ca un şir de baiţi, cu deosebirea că pentru
calculul adresei sunt luate în considerare elementele specifice modului de
structurare a suportului.

Astfel, atunci când suportul este organizat în piste, cilindri şi
problematica accesului este rezolvată prin poziţionarea pe aceste unităţi de
acces, adresarea efectuându-se luând în calcul elemente structurale.

În plus, particularităţile de desfăşurare în plan fizic a operaţiilor de
intrare/ieşire determină analiza distinctă a raportului dintre semnificaţia
instrucţiunilor I/O din programe şi operaţiile efective de citire/scriere de pe
suportul extern.

Presupunând că pentru un sistem de calcul modulele care realizează
citiri/scrieri operează cu conţinutul unor buffere de lungime L, tot timpul
aceste funcţii furnizează informaţii asupra începutului zonei ce este
explorată, lungimea acesteia fiind rezultatul logicii de organizare a datelor.

Programatorul are acces direct sau indirect la zona de memorie
tampon prin intermediul adresei sale de început sau prin intermediul unei
alte zone de memorie definită în programul său, zonă în care este copiat
conţinutul bufferului.

Memoria
externă

Operaţii de
citire / scriere

adresa de început
buffer

zona de memorie
definită de
utilizator

6

1

5

2

3 4

Figura 18.1 Operaţii de intrare/ieşire

Dinamica operaţiilor de intrare/ieşire determină actualizarea variabilei
pointer care delimitează partea de început a subzonei din buffer ce este
copiată în zona de memorie definită de utilizator.

În cazul funcţiilor de citire/scriere a unui caracter, variabila pointer se
modifică cu o unitate, marcând exact schimbul de informaţii în dialogul om
– calculator .

În cazul citirilor/scrierilor cu format delimitatorul acceptat este
analizat, iar algoritmul de punere în corespondenţă este astfel proiectat
încât acesta nu este integrat în setul informaţiilor.

 1 5 CR 1 2 0 CR 1 CR 1  CR

algoritm
conversie
alfanumeri
c- întreg

algoritm
conversie
alfanumeric-
întreg

algoritm
conversie
alfanumeric
-întreg

algoritm
conversie
alfanumeric
-real

 variabila A variabila B variabila C variabila D

Figura 18.2 Punerea în corespondenţă a valorilor citite

Şirurile de caractere sunt delimitate prin CR, iar algoritmul de

parcurgere a bufferului determină un astfel de conţinut al variabilei pointer
încât este transmis ca parametru funcţiilor de conversie începutul fiecărei
subzone de buffer care începe după CR.

Modul cum este concretizat CR ca delimitator de sfârşit de şir şi
modul cum este definit descriptorul de format imprimă structurii de
parametri ai funcţiilor de conversie anumite particularităţi.

Se observă că dinamica variabilei pointer este influenţată de tipul
operaţiei de intrare/ieşire. Acest aspect explică de ce este necesară
efectuarea avansului acestuia, când se alternează citiri cu format cu citiri
fără format. La operaţii neomogene există modalităţi neomogene de definire
şi de tratare a delimitatorilor de sfârşit de şir ca rezultat al activării tastei
CR.

Ceea ce pare simplu în cazul structurilor de date interne, nu devine
mai complicat în cazul structurilor de date externe, atât timp cât sunt
clarificate chestiunile legate de variabilele pointer asociate bufferelor şi de
faptul că o citire fizică efectivă nu înseamnă neapărat o citire logică, iar la
scriere se întâmplă acelaşi lucru. Prin operaţia logică, înţelegem acţiunea ce
corespunde unei apelări de funcţie citire/scriere din program.

De exemplu, pentru zona de lungime minimă L = 256 octeţi, ce este
scrisă/citită la o singură operaţie fizică efectivă pe/de pe suport, la scrierea
pe suportul extern a trei variabile de tip articol, A, B şi C cu:

lg(A) = 120 octeţi
lg(B) = 110 octeţi
lg(C) = 200 octeţi

variabila pointer permite preluarea datelor din structura A, se majorează cu
120, preia datele din structura B şi realizează o scriere fizică pe suport.
Variabila pointer este apoi reiniţializată şi va prelua datele structurii C după
care efectuează a doua scriere fizică. În acest caz celor trei scrieri logice le-
au corespuns două scrieri fizice.

Există diferite modalităţi de realizare a operaţiilor de citire/scriere
după cum se folosesc sau nu factori de blocare, se definesc sau nu elemente
de regăsire a informaţiilor.

Structurile de date externe nu diferă mult de structurile de date
interne. Apar unele complicaţii care nu sunt majore de altfel, prin aceea că
volumul datelor este foarte mare şi elementele repetitive abundă, ceea ce
conduce la ideea că structurile de date externe sunt privite ca structuri de
structuri de date interne dispuse pe suport de memorie externă.

Pentru a realiza regăsirea într-un volum de date de dimensiuni
remarcabile, este necesară organizarea, sistematizarea datelor şi crearea
acelor elemente indispensabile localizării, adresării.

Structurile de date externe sunt contigue, formate din elemente
dispuse în continuarea celorlalte şi necontigue, distanţa dintre elemente
fiind o variabilă aleatoare a cărei lege de repartiţie este identificabilă, dar
care necesită memorarea distanţelor, întrucât nu se construieşte un
mecanism de generare cu repetare a acestora.

Structurile de date externe se regăsesc în cele mai multe cazuri sub
denumirea de fişiere. Când ating un nivel de structurare prin adrese
suficient de dezvoltat, se formează fişiere interdependente, iar în cazul unor
structuri mai complexe se regăsesc sub denumirea de baze de date.

În cazul în care conţinutul de lungime L este tratat distinct, se ia în
discuţie conceptul de înregistrare fizică. Se porneşte de la faptul că într-un
buffer, de regulă sunt stocate datele ce corespund unei structuri de tip
articol, ce se recunosc sub denumirea de înregistrare logică sau articol logic.
Scopul este de a face deosebirea între modul în care se dispun informaţiile
pe suportul fizic şi modul în care sunt gândite organizările de date în raport
cu prelucrările particulare.

Introducerea factorilor de blocare vine să complice lucrurile, dar să
îmbunătăţească indicele de folosire a zonelor de memorie.

Dacă:

L’ = lg (structura de date de tip articol)  L (18.1)

şi dacă există:







'L

L
k

 (18.2)

unde parantezele drepte înseamnă partea întreagă a expresiei, raportul k
reprezintă o expresie mai simplificată a factorului de blocare.

De exemplu, dacă definim o structură de tip articol, ce conţine
câmpuri ce conduc la o lungime de 80 octeţi şi L = 256 octeţi:

  32,3
80

256




k

 (18.3)

În cazul în care k’ = 1, pe cei 256 baiţi ai bufferului este încărcat un

articol, ce este în fişier. Deci fişierul conţine în final n articole fizice şi tot n
articole logice, gradul de încărcare cu informaţie utilă fiind:

%30100
32

10
100

256

80
1 





n

n
g

 (18.4)

În cazul în care k’ = 2:

  
100

256

1602/
2 





n

mn
g

 (18.5)

unde:






imparnumarendaca

parnumarendaca
m

,1

,0

Pentru k’ = 3:

  
100

256

2403
3 





n

mn
g

 (18.6)

Se observă că:

123 ggg  (18.7)

Se vorbeşte de factorul de blocare optim care se stabileşte pentru

fiecare tip de memorie externă şi lungime de structură de date de tip
articol, ce urmează a fi memorată în fişier.

În continuare, luând în considerare numai aspectele care ţin de modul
de stocare a informaţiei, strict dependentă de aplicaţia programatorului, se
fac următoarele specificaţii:

- se consideră fişierul ca structură de date contiguă dacă
informaţiile utile sunt dispuse unele în continuarea celorlalte, fără
baiţi care să le separe;

- se consideră fişierul ca structură de date regulat necontiguă dacă
între toate articolele sau între grupuri de articole, având număr
fix, există baiţi nefolosiţi, în acelaşi număr; există posibilitatea de
a construi o formulă de calcul a adresei articolului k, pornind de la
adresa altui articol j;

- se consideră structuri de date necontigue fişierele ale căror
articole sunt dispuse unele faţă de celelalte, la distanţe care sunt
variabile aleatoare.

Trecerea de la memoria internă la memoria externă, ia în considerare
modul de organizare al fiecărui suport. Dacă la nivelul memoriei interne
aceasta este privită ca un vector, în cazul suporturilor externe de informaţie
organizate pe piste baiţii sunt priviţi ca având dispunerea asemeni
elementelor unei matrice. Linia indică pista pe care se află baitul, iar
coloana indică poziţia baitului pe pistă.

Organizarea pe sectoare determină luarea în considerare a unei
matrice tridimensionale. Pentru fiecare suport realizatorii pun la dispoziţie
formulele de calcul ale adreselor cu luarea în considerare a elementelor de
structură a suportului fizic.

Problema fragmentării informaţiilor determină stocarea de date
necesare localizării părţii ce se continuă într-o altă zonă a suportului.

Pentru simplificarea prezentării se consideră un suport extern S,
căruia i se asociază un model matriceal de dispunere a baiţilor. Baitul bij
reprezintă baitul al j-lea, aflat pe pista i a suportului. Suportul are n piste,
iar pe o pistă se află m baiţi.

Pentru început se presupune că baiţii au aceeaşi destinaţie, respectiv
de a memora informaţii utile. Nu există baiţi care stochează informaţii
privind structura suportului şi modul de ocupare a acestuia.

18.2 Criterii de clasificare a fişierelor

Şi în cazul clasificării fişierelor, asemenea datelor interne, există o

multitudine de criterii, fiecare fişier fiind clasificat cu unul sau mai multe
atribute ce corespund criteriilor de clasificare.

a) Criteriul lungimii articolelor ce alcătuiesc fişierul le împarte în:
- fişiere cu articole de lungime fixă – sunt formate din elemente

având aceeaşi lungime; fişierele sunt asemănătoare vectorilor
ca structuri de date interne; elementele sunt omogene şi sunt
dispuse unele în continuarea celorlalte;

- fişierele cu articole de lungimi diferite, dar cunoscute – se
consideră m tipuri de articole, având fiecare lungimea l1, l2, …,
lm; fişierul conţine aceste elemente dispuse într-o anumită
ordine sau în ordine oarecare; în ultima situaţie este necesară
memorarea de informaţii care să permită identificarea tipurilor
de articole şi lungimea acestora;

- fişiere cu articole de lungime diferită, dar necunoscută – ceea
ce se cunoaşte este legat de faptul că lungimile articolelor se
află cuprinse între două limite: lungimile articolelor sunt
variabile aleatoare, aparţinând unui interval definit; în mod
obligatoriu, primul câmp conţine lungimea articolului.

b) Criteriul informaţiilor ce definesc regulile referitoare la dispunerea
elementelor, împarte fişierele în:
- fişiere având ca singur mod de dispunere poziţia articolelor;
- fişiere cu elemente sortate după un câmp numit cheie a

articolului, în funcţie de care se face reperarea în fişier.
c) Criteriul informaţiilor de localizare a articolelor care alcătuiesc

fişierul;
- fişiere care nu conţin informaţii asupra poziţiei articolelor –

singura modalitate de a selecta un articol este parcurgerea
tuturor articolelor care îl preced;

- fişiere care au definite zone ce conţin informaţii referitoare la
adresele unor grupe şi subgrupe de articole – pentru a identifica
un anumit element se localizează grupul şi apoi subgrupul de
articole; o dată identificat subgrupul, selectarea elementului
căutat este rezultatul parcurgerii articol de articol până la
găsirea respectivului element;

- fişiere în care elementele conţin informaţii ce permit conturarea
de liste înlănţuite sau arbori pe suporţi de memorie externă –
complexitatea legăturilor dintre articolele fişierului determină un
volum de informaţie privind adresele articolelor cu care un
element intră într-o anumită relaţie.

d) Criteriul operaţiilor ce sunt efectuate de fişiere determină gruparea
acestora în:
- fişiere destinate scrierii datelor;
- fişiere destinate citirii datelor;
- fişiere destinate efectuării operaţiilor de actualizare.

 Oricare dintre fişierele unei grupe, în raport cu scopurile
prelucrării îşi modifică atributele. De exemplu, un fişier care se
creează este destinat scrierii datelor. La consultare acelaşi fişier
aparţine grupei a doua, iar dacă înaintea consultării se efectuează
actualizări, acelaşi fişier aparţine celei de a treia grupe.

e) Criteriul gestiunii fişierelor ia în considerare existenţa unui sistem
de funcţii de prelucrare care asigură efectuarea operaţiilor
specifice lucrului cu fişiere, numit sistem de gestiunea fişierelor.
Acest criteriu împarte mulţimea fişierelor în:
- fişiere care sunt prelucrate prin apelarea de funcţii ale unui

sistem de gestiune – rezolvă întreaga problematică legată de
organizarea şi accesul la date; funcţiilor sistemului de gestiune
a fişierelor le corespund instrucţiuni; parametrii instrucţiunilor
devin parametrii reali ai funcţiilor sistemului de gestiune;
programatorul abordează întreaga problematică numai din
punct de vedere logic al rezolvării problemei sale;

- fişiere pentru care sunt definite funcţii primitive de realizare a
operaţiilor elementare cu datele destinate suporturilor externe –
programatorului îi revine sarcina să gestioneze totalitatea
informaţiilor necesare regăsirii elementelor ce alcătuiesc
fişierul; pentru programator, fişierul este o masă amorfă de
baiţi, având conţinut şi poziţii; el efectuează transferuri de baiţi
din zone de memorie spre suportul extern, indicând adrese
acestor zone, lungimea zonei şi un mod de reparare a fişierului;
există situaţii în care se efectuează lucru direct în bufferul
asociat fişierului cu care se lucrează; în acest caz fişierul apare
ca o resursă iar gestiunea acestei resurse este lăsată integral la
dispoziţia programatorului;

- fişiere care se construiesc şi se utilizează folosind instrucţiunile
limbajului de asamblare – programatorul defineşte totalitatea
condiţiilor pentru efectuarea operaţiilor cu fişiere; sunt definite
şi încărcate etichetele care sunt scrise; se definesc bufferele şi
se gestionează; se calculează adresele de pe suportul extern
unde vor fi scrise datele; programatorul preia în programele
sale tot ceea ce efectuează funcţiile primitive sau sistemul de
gestiune a fişierelor; programul în care apar fişierele gestionate

de programator nu apelează alte funcţii decât cele scrise de
acesta şi foloseşte numai instrucţiuni ale limbajului de
asamblare, cel mult seturi de macroinstrucţiuni.

f) Criteriul organizării fişierelor, ia în considerare existenţa sau
inexistenţa unor informaţii de regăsire a datelor, după cum
urmează:

- fişierele cu organizarea secvenţială - succesiune contiguă de
articole fără existenţa unor elemente de informare, altele decât
delimitatorii de început şi de sfârşit; dacă se ia în considerare
similitudinea acestui mod de organizare cu înregistrarea pe o
casetă a şlagărelor unei formaţii rock, avem imaginea clară a
tuturor posibilităţilor de lucru cu fişierele secvenţiale; accesul la
un şlagăr presupune audierea celor care-l preced; ştergerea
unui şlagăr, altul decât cel de la sfârşit presupune existenţa a
două casete; înregistrarea unui nou şlagăr, se face numai după
ultimul şlagăr anterior;

- fişierele însoţite de informaţii de tip index – presupun sortarea
articolelor după chei şi împărţirea acestora în submulţimi;
punerea în corespondenţă a elementelor din submulţimi cu
adresele fizice determină realizarea într-un fişier a unei mulţimi
de subfişiere secvenţiale; cu ajutorul indecşilor se identifică
subfişierul secvenţial şi articolul căutat este preluat după ce a
fost localizat prin parcurgerea articol după articol a
subfişierului; operaţiile de actualizare, vizează ştergerea de
articole, adăugarea de articole la sfârşitul fişierului sau
subfişierelor, modificarea de câmpuri, rescrierea de articole şi
inserarea de articole; subfişierele sunt masive unidimensionale
contigue, formate din articole; ştergerea este o operaţie de
dezactivare a elementelor, fără realizarea deplasării celorlalte
elemente cu o poziţie spre stânga, deci fizic ştergerea unui
articol nu se produce, operaţia fiind numai la nivel logic, în
sensul că accesul la date este precedat de un test asupra
caracterului activ sau neactiv al articolului; inserarea de
articole, pentru a menţine criteriul ordonării elementelor care a
determinat împărţirea mulţimii în submulţimi de articole,
presupune realizarea de liste înlănţuite; articolul inserat este
dispus într-o zonă disponibilă numită folcloric, zona de depăşire.

- fişiere ale căror articole sunt dispuse aleator pe suport –
cunoscându-se dimensiunile fişierului se alocă o zonă pe
suportul extern printr-o operaţie numită preformare; datele
sunt puse în corespondenţă printr-un procedeu oarecare cu
adresele unde vor fi scrise; rezultă că procedeul de punere în
corespondenţă este cu atât mai performant cu cât el realizează
o dispunere mai uniformă a articolelor în zona rezervată; există
posibilitatea ca folosind algoritmi de randomizare să se obţină
elemente ce intră în calculul adresei fizice a începutului zonei
din suportul extern în care se scrie un articol; pornind de la
imposibilitatea să se genereze numere diferite care să
îndeplinească condiţia de apartenenţă la subintervale, pe
măsură ce se scriu articole în fişiere, are loc fărâmiţarea zonei
rezervate; se construiesc funcţii pentru gestionarea articolelor
care au aceeaşi adresă fizică prin calcul; aceste fişiere cu

organizarea aleatoare, permit efectuarea întregii game de
operaţii, cu condiţia ca mecanismul de obţinere a adresei fizice
să se menţină neschimbat; fişierul organizat aleator apare ca o
structură necontiguă în care fiecare element este localizat pe
baza unei formule, având ca parametru valoarea unui câmp ce
intră în structura articolului, câmp numit cheia articolului;
numeroasele lucrări care prezintă limbajul COBOL, redau
imagini sugestive ale modului în care se implementează filozofia
fiecărui mod de organizare a fişierelor, deci realitatea este alta,
dacă se are în vedere organizarea matriceală a suportului şi
modul static în multe cazuri de alocare a memoriei externe.

g) Criteriul suportului unde este stocat fişierul împarte fişierele în:
- fişiere pe cartele perforate;
- fişiere pe bandă perforată;
- fişiere pe bandă magnetică;
- fişiere pe suport optic;
- fişiere pe disc;
- fişiere pe dischete;
- fişier în memoria internă.

Prelucrările moderne, neîngrădite de restricţiile lipsei de memorie
internă, au condus la citirea unui fişier ca un singur articol foarte mare şi
prelucrarea acestuia în memorie. Logic apare o singură instrucţiune de
citire, deci apelarea o singură dată a funcţiei în realitate au loc:

m
L

L
cf f 








 (18.8)

citiri fizice, unde:

 cd - citiri fizice din fişier;
 Lf - lungimea fişierului, dată în baiţi;
 L - lungimea unei înregistrări fizice la o citire;
 m - variabila booleană ce este 0, dacă Lf este divizibil prin L şi 1 în

caz contrar.
h) Criteriul privind modul de efectuare a operaţiilor de intrare/ieşire

grupează fişierele în:
- fişiere de tip stream în care datele la scriere sau la citire sunt

câmpuri elementare sau alte tipuri structuri de date, constituite
într-un şir, cu indicarea formatului după care se fac mai întâi
convenţiile şi apoi se stabilesc lungimile şirurilor care vor fi
scrise pe suport; fişierul apare ca o succesiune de elemente
oarecare ale căror poziţii sunt deduse, dacă se iau în calcul
informaţiile pe care le oferă descriptorii de format şi locul pe
care fiecare element îl ocupă în lista de parametri ai funcţiei
apelate la scriere; este de dorit ca aceleaşi liste de variabile de
la scriere să fie utilizate şi la apelul funcţiilor de citire, iar
descriptorii de format să se menţină aceiaşi pentru a oferi
succes prelucrărilor;

- fişiere de tip record în care datele sunt caracterizate prin
lungime şi adresă de început; articolele au lungime fixă sau
variabilitatea lungimilor este în cadrul unei mulţimi formate din
câteva elemente; operaţiile de lucru cu fişierele de acest tip nu

sunt în general precedate sau urmate de conversii; operaţiile ce
preced calculele sunt lăsate la dispoziţia programatorului;

De exemplu, fişierul stocurilor de materiale este:
- un fişier de tip record;
- are organizare indexată;
- se află pe disc;
- este gestionat cu funcţiile unui sistem de gestiune a fişierelor;
- are articole de lungime fixă;
- se efectuează toate operaţiile de actualizare pe el;
- conţine informaţii asupra poziţiei anumitor articole;
- articolele sunt identificate după codul materialului care joacă rol

de cheie de articol;
- fiecare material are o cheie unică;
- fişierul este sortat crescător.
Astfel, un fişier oarecare este caracterizat înscriind oricare dintre

informaţiile ce rezultă din criteriile specificate.

18.3 Fişiere secvenţiale

Fie mulţimea de elemente E1, E2, …, En oarecare ce corespund

structurilor de date SD1, SD2, …, SDn definite într-un program P.
Elementele Ei, i = 1, 2, …, n, sunt şiruri de baiţi caracterizate printr-

un conţinut rezultat din iniţializarea structurilor de date SDi, i = 1, 2, …, n.
Pe un suport extern se alocă elementelor E1, E2, …, En zone de memorie de
lungime:

   lglg iSD

 (18.9)

fişierul având în final lungimea:

   



n

i
if SDnL

1

lglg 

 (18.10)

De obicei, lg(α) = 2. Cei doi baiţi ataşaţi fiecărui element vor conţine

lungimea articolului:

   iSDcont lg (18.11)

Fişierul este caracterizat printr-o adresă a articolelor. Astfel:

   lg1  AEadr (18.12)

unde, A reprezintă adresa fizică a primului bait a primului articol căruia i s-a
ataşat în faţă lg(α) baiţi pentru a memora lungimea articolului respectiv:

      





1

1

lg
i

j
iji contAEadr 

 (18.13)

sau:

     





1

1

lglg
i

j
ii iSDAEadr 

(18.14)

unde, βk reprezintă grupul de baiţi de lungime lg(α) ataşat elementului Ek
în fişier. Dacă:

     nSDSDSD lg...lglg 21 

 (18.15)

atunci:

     ncontcontcont   ...21
 (18.16)

caz în care, în eticheta de început a fişierului se specifică tipul articolului
lungime fixă. De asemenea, se memorează şi lungimea, iar lg(βk) devine
zero.

Adresa unui element oarecare Ei, este obţinută prin relaţia:

   





1

1

lg
i

j
ji SDAEadr

(18.17)

Cu fişierele secvenţiale se efectuează următoarele proceduri:
- crearea unui fişier secvenţial constă în dispunerea elementelor E1,

E2, …, En pe suport în această ordine;
- consultarea integrală sau parţială a fişierului baleiază din aproape

în aproape elementele fişierului şi se prelucrează cele care
prezintă interes;

- adăugarea elementului Em se efectuează la adresa:

       lglg  nnm SEadrEadr
 (18.18)

ceea ce pune în evidenţă că adăugarea se face numai la sfârşitul
fişierului;

- interclasarea a două fişiere;
- sortarea fişierelor, care constă în obţinerea unui fişier în care

articolele au o astfel de dispunere încât pentru un câmp x există
relaţia:

cont (E1.x) > cont (E2.x) > … > cont (En.x) (18.19)

dacă sortarea s-a făcut descrescător, sau:

cont (E1.x)  cont (E2.x)  …  cont (En.x) (18.20)

dacă sortarea s-a făcut crescător.

Întrucât se lucrează în cele mai multe cazuri cu fişierul în totalitatea
lui, nu este justificată memorarea de informaţii pentru anumite articole.

Explorarea fişierelor secvenţiale corespunde unei structuri de date
contigue, asemeni unui vector de structură sau a unei înşiruiri de diferite
structuri, cu posibilitatea calculului adresei unui element oarecare:

adr (suc (Ei)) = adr (Ei) + lg (SDi) + lg () (18.21)

adr (pred (Ei)) = adr (Ei) – lg (SDi-1) – lg () (18.22)

Se spune că fişierul este închis dacă:

  ni
m

m
EEsuc 


lim

 (18.23)

Se spune că fişierul este deschis dacă:

  1lim EEpred i
m

m



 (18.24)

O astfel de abordare determină continuarea prelucrării chiar dacă

există tentative de a închide un fişier deja închis sau de a deschide un fişier
deja deschis.

Apare problema privind parametrii funcţiei de deschidere. Dacă sunt
luaţi în considerare parametrii primei deschideri, problema este rezolvată,
tentativele de deschidere a unor fişiere deja deschise fiind inefective.

Întrucât există formule de calcul pentru adresele fiecărui element din
submulţimea E1, E2, …, En nu se justifică construirea unui vector a adreselor
în fişier a1, a2, …, an pentru aceste elemente.

Sistemele de operare evoluate gestionează închiderea fişierelor la
închiderea execuţiei programelor.

18.4 Fişiere secvenţial – indexate

Se consideră o mulţime de elemente E1, E2, …, En generate după

structura SD şi un câmp x astfel încât:

cont (E1.x)  cont (E2.x)  …  cont (En.x) (18.25)

deci, şirul elementelor este sortat crescător după câmpul x, care joacă rol
de cheie a articolelor în structura SD de generare.

Elementele de sortare vor fi memorate, fiecare ocupând o zonă de
lungime:

   lglg SD (18.26)

unde, γ reprezintă o zonă în care este memorată o adresă fizică de pe
suport, ţinând seama de structurarea contiguă a suportului.

Fişierul are un fond informaţional de lungime:

    SDnLf lglg  

 (18.27)

Se construieşte mulţimea perechilor:

(cont(Ei.x).ai) (18.28)

a cheilor şi adreselor articolelor ce intră în componenţa fişierului. Se
calculează:

  
n

xxEcont
n

i
i




 1

.
2

 (18.29)

şi rezultă o împrăştiere suficient de mare care să reducă şansele găsirii unei
formule de calcul a adresei fizice a unui articol, folosind strict ca informaţie
cheia acestuia.

Dacă se acceptă ideea utilizării unui arbore binar cu 4 noduri
terminale, mulţimea elementelor E1, E2, …, En este împărţită în 4 subşiruri,
având un număr aproape identic de elemente, reţinând adrese şi cheile
elementelor ce delimitează fiecare subşir de articole:

(cont(Ekj.x), akj), j= 1, 2, 3, 4; k = 1, 2, …, n (18.30)

unde k1  k2  k3  k4.

Perechile de delimitare ale începutului de subşir, se obţin astfel:
- pentru primul subşir:

  111 ,. axEcontQ  









 (18.31)

- pentru al doilea subşir:

  112 ,.  mm axEcontQ
 (18.32)

- pentru al treilea subşir:

  12213 ,.  mm axEcontQ
 (18.33)

- pentru al patrulea subşir:

  13314 ,.  mm axEcontQ
 (18.34)

Perechile pentru delimitarea sfârşitului pentru fiecare din cele 4

subşiruri sunt:

 
  
  
  nn

mm

mm

mm

axEcontP

axEcontP

axEcontP

axEcontP

,.

,.

,.

,.

4

333

222

1






 (18.35)

S-a considerat că fiecare subşir are m elemente, cu excepţia ultimului
şir care are 1, 2 sau 3 elemente mai puţine.

Setului de date i se asociază arborele binar:

(Q1, P4)

(Q1, P2) (Q3, P4)

(Q1, P1) (Q2, P2) (Q3, P3) (Q4, P4)

Figura 18.3 Structura setului de date i

Dacă, de exemplu, fişierul sortat este organizat secvenţial şi se

doreşte citirea articolului penultim, care are cheia 7233, în mod normal
trebuie să fie citite cele n-2 articole care îl preced. Dacă însă fişierul este
înzestrat cu această informaţie pe care o conţine arborele binar cu 4 noduri
terminale, inspectarea nodului rădăcină permite vizualizarea faptului că
articolul căutat cu cheia 7233 este în fişier, adică:

cont (E1.x) ≤ 7233 ≤ cont (En.x) (18.36)

Întrucât:

2

 .x)(Econt .x)(Econt
7233 in 



 (18.37)

rezultă că se parcurge pe nivelul inferior, nodul din dreapta.

Întrucât:

2

 .x)(Econt .x)(Econt
7233 n12n 

 

 (18.38)

rezultă că se parcurge pe nivelul inferior, nodul din dreapta.

Odată ajungând pe ultimul nivel al arborescenţei, se reţin adresele
a3m+1 şi an şi se baleiază secvenţial subfişierul delimitat astfel. Deci, se vor
baleia mai puţin ¼ din totalul elementelor fişierului.

Pentru construirea arborilor binari asociaţi există numeroşi algoritmi
de partiţionare a fondului informaţional. Important este ca numărul
căutărilor secvenţiale să fie cât mai redus. Trebuie realizat un echilibru între
numărul de nivele ale arborelui binar şi numărul subfişierelor, deoarece
creşterea numărului de subfişiere conduce la creşterea duratei de acces la
acestea din cauza parcurgerii unui număr prea mare de noduri în arborele
binar.

În cazul în care se doreşte inserarea unui articol Ej într-un astfel de
fişier se identifică poziţia lui, astfel încât:

cont (Ek.x)  cont (Ej.x)  …  cont (Ek+1.x) (18.39)

În acest caz, articolul ca atare este memorat într-o zonă rezervată a

fişierului, legătura cu celelalte articole efectuându-se prin:

   
   1



kj

jk

Eadrcont

Eadrcont





 (18.40)

ce corespunde unei inserări de elemente într-o listă.

La un număr mare de inserări, parcurgerea listelor reduce
performanţa programului de exploatare a fişierului secvenţial – indexat.
Acestea justifică trecerea la reorganizarea fişierului. Prin reorganizare se
înţelege crearea unui nou fişier, în care elementele se dispun într-o aceeaşi
zonă fără a mai exista informaţii de legătură, ca în cazul în care ar fi
dispersate pe suport.

La reorganizare, se construieşte un nou binar al indecşilor. Utilizarea
arborilor binari are aici numai un caracter exemplificativ. Tipul de arbore
depinde în principal de împrăştierea cheilor în intervalul pe care sunt
definite. Informaţiile privind arborele asociat tabelei de indecşi se stochează
pe suport şi face parte din fişier.

Pentru o parcurgere mai rapidă, în cazul în care este posibil,
informaţiile aferente structurii arborescente a indecşilor se încarcă în
memoria internă şi se lucrează cu ele folosind funcţiile de parcurgere ale
unui arbore.

În limbajele precum C şi C++, fiecare programator implementează
algoritmi proprii pentru organizarea secvenţial – indexată, iar prin
comparaţia comportamentului lor statistic cu alţi algoritmi existenţi, sunt
dezvoltaţi sau abandonaţi.

18.5 Fişiere aleatoare

Sunt acele fişiere care ocupă o anumită zonă din memoria externă şi

ale căror elemente nu sunt reperate decât prin adresa fizică pe care o au pe
suportul extern.

Întrucât abordarea fişierelor random, depăşeşte prin amploarea
fundamentării acest cadru, se consideră oportună prezentarea unui caz
particular de fişiere ale căror adrese ale elementelor se calculează în funcţie
de poziţia pe care acestea o au, tot astfel cum se procedează în cazul
masivelor unidimensionale.

Se consideră funcţia poz(Em) care indică poziţia elementului Em în
şirul de articole.

Astfel, dacă mulţimea de elemente E1, E2, …, En are exact n
elemente:

1≤ poz (Ej)≤ n (18.41)

poz (succ (Ej)) = poz (Ej) + 1 (18.42)

poz (pred (Ej)) = poz (Ej) – 1 (18.43)

Din cele două relaţii rezultă că:

poz (succ (Ej)) - poz (pred (Ej)) = 2 (18.44)

sau:

       
2

jj
j

EpredpozEsuccpoz
Epoz




 (18.45)

Cu aceste definiţii:

adr(Ej) = A + (poz(Ej) – 1) * lg(Ej) (18.46)

se construieşte şirul de perechi:

(cont(Ej.x), poz(Ej)) (18.47)

care permite, în cazul în care se stabileşte o relaţie de forma:

poz(Ej) =  (cont (Ej.x)) (18.48)

regăsirea elementului după poziţie pe care o are în fişier.

În cazul în care nu se identifică funcţia (), elementele cont(Ej.x), j =
1, 2, ..., n, vor fi memorate într-o structură omogenă unidimensională şi
poziţia elementului în care este memorată această informaţie, corespunde
poziţiei articolului în fişier.

18.6 Fişiere interdependente

Interdependenţa fişierelor, este privită sub două aspecte şi anume:

interdependenţa la nivelul articolelor unui fişier şi, respectiv,
interdependenţa la nivelul a două sau mai multe fişiere.

Se consideră două fişiere:
- fişierul PRODUSE, ale cărui elemente sunt generate după structura

PROD, cu câmpurile cod produs, denumire produs, stoc, unitate de
măsură, număr materii prime care intră în componenţa sa şi
materiile prime, gama de operaţii;

- fişierul MATERIALE, ale cărui elemente sunt generate după
structura MAT, cu câmpurile cod material, denumire material,
unitate de măsură, cantitate existentă în stoc, preţ unitar.

Dacă dorim să aflăm costul materiilor prime necesare realizării unui
produs, citim din fişierul PRODUSE articolul corespunzător respectivului
produs şi rând pe rând preluăm codurile materialelor ce intră în componenţa
sa. Pentru fiecare material ce intră în componenţa produsului, citim câte un
articol din fişierul MATERIALE.

Să ne imaginăm că fişierele sunt secvenţiale. Rezolvarea este extrem
de greoaie, pentru că accesul la materiale este obţinut numai prin baleierea
de la început a fişierului MATERIALE, dacă materialele nu au fost memorate

în ordine crescătoare după codurile acestora în articolul din fişierul
PRODUSE şi dacă fişierul MATERIALE nu este sortat.

Problema devine eficientă dacă, în locul codurilor materialelor,
dispunem de adresele articolelor în fişierul MATERIALE, dar reorganizarea
fişierului de materiale, ar atrage după sine actualizarea adreselor pentru
materiale din componenţa fişierului PRODUSE.

Dacă se lucrează cu fişiere indexat – secvenţiale, rezultatul este bun,
iar dacă se folosesc poziţiile materialelor dintr-o listă, performanţa devine şi
mai bună.

Acest tip de dependenţă este unidirecţională între două fişiere.
Numărul de legături dintre un articol din fişierul PRODUSE şi fişierul
MATERIALE este variabil, strict dependent de numărul de materiale ce intră
în componenţa produsului cu care articolul din fişierul PRODUSE este pus în
corespondenţă.

PRODUSE

Produsul x

MATERIALE
Cod mat.1 ..
Cod mat. 2 ..
Cod mat. 3. ..
Cod mat. 4 ..

Cod
produs

Denumire
produs

UM Preţ Nr.
mat.
4

Cod
mat.
1

Cod
mat.
2

Cod
mat.
3

Cod
mat.
4

Figura 18.4 Legătura între fişierele PRODUSE şi MATERIALE

Este de dorit ca fişierele PRODUSE şi MATERIALE să se realizeze într-

o primă etapă cu codurile materialelor şi lângă ele să fie rezervate câmpuri
pentru memorarea adreselor fizice ale articolelor ce corespund în fişierul
MATERIALE respectivelor coduri.

În a doua fază, un sistem de programe identifică poziţia fiecărui
articol şi încarcă în fişierul PRODUSE în zonele disponibile de adresă chiar
adresa articolului al cărui cod se află în imediata sa vecinătate.

Reorganizarea fişierelor pe fondul definirii codurilor nu implică decât
reîncărcarea de adrese, lucru ce se efectuează automat.

Fişierele interdependente privesc legături într-un singur sens, de la
fişierul de produse către fişierul de materiale. Se construiesc şi legături în
sensul opus, pentru fiecare articol al fişierului de materiale, indicându-se în
care dintre produse, este folosit respectivul material. Este o informaţie
necesară, dar care lungeşte mult articolul MAT şi de aceea, în acest caz este
puţin utilizată o astfel de abordare.

Dacă totuşi se doreşte şi o legătură dinspre fişierul MATERIALE către
fişierul PRODUSE, realizarea se efectuează în acelaşi fel, parcurgându-se tot
doi paşi.

În final se vor obţine legăturile dintre articole, ilustrate în figura 18.5.

PRODUSE

y1

y2

y3

y4

MATERIALE

y1 x1

x2

x3

x4

Figura 18.5 Legăturile dintre articolele fişierelor MATERIALE şi PRODUSE

Rezultă că produsul y3, utilizează materialele x1, x2 şi x4, iar

materialul x3 este prezent în compoziţia produselor y1 şi y2.
Articolele fiecărui fişier rămân în continuare independente unele de

celelalte. Ele sunt prelucrate separat, singurele combinaţii fiind cele legate
de posibilitatea de a permite calculul necesarului de materiale, pentru
realizarea de k produse de tipul y3 şi de a stabili dacă stocurile materialelor
x1, x2, x4 sunt suficiente.

La serviciul aprovizionare, prin parcurgerea fişierului MATERIALE, se
observă care sunt viitoarele cereri din materialul x3.

Se observă că o astfel de construcţie este limitativă, dar cu o serie de
artificii de consultare a celor două fişiere se obţin şi alte regrupări de date.

O privire de ansamblu pune în evidenţă că păstrarea articolelor din
fiecare fişier ca entităţi independente reduce diversitatea combinaţiilor de
date, care pentru un manager competent, reprezintă o sursă sigură de
fundamentare a deciziilor.

18.7 Fişiere înlănţuite

Apar întrebările: structurile dinamice cu multe elemente sunt

memorate pe suport extern? Se implementează mecanisme de înlănţuire în
memoria externă? Cum se generează legăturile exprimate prin adrese dintre
elementele deja alocate dacă se specifică numai cheile de identificare a
acestora?

Răspunsurile nu sunt simple, dar au fost date cu mulţi ani în urmă,
obţinându-se funcţii de creare şi prelucrare a fişierelor înlănţuite.

Se consideră că pentru realizarea unui produs, este necesară
parcurgerea unor etape, efectuarea unor operaţii de prelucrare într-o
anumită succesiune, numită gama de operaţii.

Descrierea unei operaţii, conţine informaţii precum:
- codul operaţiei;
- denumirea operaţiei;
- durata de execuţie;
- calificarea cerută;
- tipul de meseriaş care o execută;
- utilajul necesar;
- scule necesare;

- plata pentru efectuarea operaţiei;
- operaţia precedentă;
- operaţia următoare;
La execuţia programului de încărcare a fişierului gamei de operaţii, se

introduc rând pe rând, datele ce urmăresc şablonul descris mai sus. Pentru
primul articol al unei game, operaţia precedentă este NULL, iar pentru
ultimul articol din gamă, operaţia următoare este de asemenea NULL.

Sistemul de creare a fişierului cu acest tip de înlănţuire adaugă două
câmpuri ce vor fi iniţializate cu adresele ce corespund poziţiei articolelor
pentru operaţia precedentă şi pentru operaţia următoare din gama de
operaţii.

Câte game de operaţii sunt definite într-un proces de producţie,
atâtea liste dublu înlănţuite vor fi realizate.

Prin parcurgerea unui fişier cu articole înlănţuite, se determină care
este necesarul de specializări şi care sunt salariile ce trebuie plătite, dacă
sunt realizate k produse de tipul x, pentru care este necesară efectuarea
operaţiilor din gama de operaţii cu un cod specificat.

Fişierul gamei de operaţii, va avea articole ce corespund gamelor G1,
G2, ..., Gn, care la rândul lor conţin operaţiile O11, O12, ..., Ok1, ..., O21, O22,
..., Ok2, ..., On1, On2, ..., Okn.

NULL | G1 O11 |

 G1 O12

 G1 O13

 G1 O1k

NULL | Gn On1 |

 Gn Okn

Gama de
operaţii

G1

Gama de
operaţii

Gn

Figura 18.6 Structura fişierului gamei de operaţii

O altă situaţie, este aceea corespunzătoare memorării pe suport

extern a structurilor arborescente.
Se consideră că la o întreprindere se realizează N produse P1, P2, ...,

PN. Fiecărui produs i se asociază o structură arborescentă, deci vor exista N
noduri rădăcină şi N noduri terminale.





N

i
iKM

1

 (18.49)

unde Ki reprezintă numărul de materii prime, repere sau subansamble
nerealizate în întreprindere şi care intră în componenţa produsului Pi.

Se pune problema memorării celor N arborescente, cu condiţia
realizării cel puţin a unui nivel de redundanţă controlat, dacă minimizarea
este dificil de realizat sau chiar nu este dorită.

Nodurile reprezintă produse, subansamble, repere sau materii prime,
despre care trebuie cunoscut:

- cod de recunoaştere, respectiv cheia;
- denumire;
- unitate de măsură;
- cantitate necesară, respectiv greutate specifică;
- preţ unitar;
- gama de operaţii;
- cod reţetă de fabricaţie;
- caracteristici de performanţă standard;
De asemenea, se impune stabilirea poziţiei în arborescenţă, indicând

nodul părinte, nodul descendent şi nodul vecin din dreapta.
Această multitudine de date, se grupează în două categorii:
- date pentru descrierea componentei ce corespunde unui nod;
- date pentru descrierea poziţiei nodului în arborescenţă.
Celor două categorii de date le vor corespunde fişiere descriptive şi

fişiere de legături.
Fişierele descriptive, au articole formate din două tipuri de date:
- date ce se completează de către utilizatori cu acele elemente ce

caracterizează un produs, un ansamblu, subansamblu, reper sau
materie primă:

- date ce se completează de un sistem de gestiune a fişierelor
înlănţuite şi care conţin adrese de articole sau identificatori de
marcare a finalului înlănţuirii.

De exemplu, pentru produsul A care este format prin asamblarea
reperelor B, C, D şi E în ordinea menţionată în figura 18.7 fişierul descriptiv,
conţine 3 articole ce corespund elementelor A, B, C, D şi E, iar fişierul de
structură descrie legăturile dintre elementele A, B, C, D şi E, conform
arcelor ce definesc gradul de tip arbore. Deci, acest fişier are articolele: (A;
B), (A; C), (C; D), (C; E).

A

B C

D E

Figura 18.7 Structura componentelor produsului A

Indicarea acestor articole nu necesită o anumită ordine. Analiza
perechilor este aceea care permite identificarea tuturor elementelor
necesare completării câmpurilor de adresă din fişierul descriptiv.

Astfel, într-o pereche (x; y) rezultă că pentru nodul x, nodul y este
descendent, iar pentru nodul y nodul x este părinte.

Nodul A este părinte pentru nodurile B şi C, dar el nu apare în nici
una dintre perechi ca descendent, deci A este nod rădăcină. În articolul din
fişierul descriptiv ce corespunde produsului A, un câmp este completat cu
NULL.

Nodul B nu apare ca părinte în nici o altă pereche, deci nu are
descendenţi. Se completează şi un câmp din articolul fişierului descriptiv ce
corespunde reperului B.

Pentru regăsirea rapidă a informaţiilor, înainte de a completa
câmpurile din fişierul descriptiv, vor fi completate în fişierul de legătură,
câmpurile ce corespund adreselor fizice pe care le ocupă articolele fişierului
descriptiv.

Astfel, legăturii corespunzătoare perechii (A; B) i se asociază în
fişierul de legătură, articolul:

cod A cod B adr (articol A) adr (articol B)

Figura 18.8 Structura articolului în fişierul de legătură

 Dacă este analizat un produs, problema nu diferă prea mult cu modul
de reprezentare a structurilor dinamice în memoria internă. Dacă însă
fişierul descriptiv conţine totalitatea nodurilor ce descriu cele N produse care
se realizează, iar fişierul de legături are atâtea elemente câte arce au cele N
arborescenţe după care se descompun produsele P1, P2, ..., Pn, avem o
imagine mai exactă a ceea ce înseamnă reprezentarea în memoria externă
a datelor ce formează articole interdependente şi care în final, dau fişierele
înlănţuite.

Obţinerea controlului asupra redundanţei revine la a deplasa
informaţii privind adresele din articolele fişierului descriptiv în fişierul de
legătură. Dacă se minimizează redundanţa, în sensul că fişierul de produse
conţine repere şi materii prime descrise o singură dată, reconstituirea
arborescenţei se obţine prin construirea tuturor adreselor de regăsire nu în
articolele din fişierul descriptiv, ci în articolele de legătură.

Problema traversării unui arbore se menţine din punct de vedere al
semnificaţiei, dar în cazul fişierelor înlănţuite revine la a utiliza, alternativ,
informaţii din fişierul de legături şi din fişierul descriptiv.

Operaţiile care sunt specifice structurilor arborescente construite în
memoria internă sunt definite şi în cazul arborescenţelor de pe mediile
externe. Modificările vizează pointerii, al căror conţinut reflectă adrese ale
suportului extern.

Funcţiile specifice pentru lucru cu fişiere înlănţuite au ca parametri
toate elementele necesare ştergerii unui nod, modificării unor legături sau a
unor câmpuri. Adresele care apar la descrierea legăturilor dintre noduri
permit parcurgerea arborelui de la rădăcină spre bază sau de la orice nod
către bază sau de la orice nod către rădăcină.

Când se proiectează o anumită structură, nu numai listă sau arbore,
trebuie ca programatorul să se familiarizeze cu ideea că oricărui arc îi
corespund două adrese. El trebuie să găsească algoritmi pentru încărcarea

în câmpuri, pe care are obligaţia să le definească, a acestor două adrese.
Programatorul este obligat să cunoască funcţiile care întorc adresa fizică a
începutului zonal de memorie pe care o ocupă un anumit articol.

Dacă sistemele de gestiune a fişierelor înlănţuite realizează aceste
operaţii pentru structuri arborescente sau pentru liste, cazuri particulare de
arborescenţe, în cazul structurilor oarecare programatorul trebuie să-şi
construiască funcţii proprii. El are grijă să rezerve zone pentru adrese, îşi
defineşte structura de date adecvată descrierii structurii produsului. De
fiecare dată, va avea grijă ca ceea ce realizează să nu genereze ambiguităţi
sau să conducă la reprezentări ce nu concordă cu structura pe care doreşte
să o implementeze în fişiere.

18.8 Fişierele bazei de date

Din punctul de vedere al modului de structurare a datelor, bazele de

date reprezintă o formă mai generală de reprezentare a datelor, care
reflectă caracteristici ale elementelor omogene ce definesc mai multe
mulţimi.

Fie mulţimile M1, M2, ..., Mk, formate fiecare din n1, n2, ..., nk
elemente, aşa fel alese încât caracterizarea completă a unui element xj 
(M1) este efectivă dacă sunt prezentate datele dj1, dj2, ..., djk, unde djk 
(Mk).

În plus, fiecare mulţime are elementele structurare după o anumită
regulă. Punerea în corespondenţă a elementelor celor k mulţimi, conduc în
numeroase situaţii, ca unui element din mulţimea Mi să-i corespundă mai
multe elemente din mulţimea Mj sau mai multor elemente din mulţimea Mi
să le corespundă un singur element din mulţimea Mh.

Se observă că necesitatea de a separa informaţiile în fişiere distincte
este dată în principal din dorinţa de a diminua redundanţa dintr-un fişier, pe
de o parte, şi pentru a permite noi facilităţi de exploatare a structurilor de
date, pe de altă parte.

În continuare, se consideră un exemplu clasic, foarte frecvent utilizat
în descrierea principiilor şi fundamentelor de realizare a bazelor de date.

Fie mulţimea M1 a persoanelor dintr-o localitate, care se află într-una
din relaţiile:

x este vecin cu y
x este fiul lui y
x este tatăl lui y
x este soţia lui y
x este soţul lui y

Un individ al colectivităţii, este descris prin:
- nume;
- adresă;
- raport cu alţi indivizi, respectiv vecini, rude;
- tip automobil/marca;
- culoare automobil,
- an cumpărare;
- loc de muncă.

Fie mulţimea M2 mulţimea automobilelor, în care elementele se află în
relaţiile:

marca x este produsă de y
marca x are capacitate z
capacitatea z are consumul specific w

Un autoturism este descris prin:
- nume producător;
- model;
- culoare;
- an fabricaţie;
- capacitate;
- tip combustibil;
- caracteristici motor;
- consum la 100 km.
Fie M3 mulţimea locurilor de muncă, formată din elemente

caracterizate prin:
- nume instituţie;
- capital social;
- tip instituţie;
- număr salariaţi;
- nume compartiment;
- nume meserii acceptate la compartimentul respectiv;
- nume lucrători din compartiment.
Fie M4 mulţimea impozitelor care se aplică mijloacelor de transport,

formată din elementele:
- limita inferioară a capacităţii cilindrice;
- limita superioară a capacităţii cilindrice;
- impozit;
- taxa CASCO pentru primii 3 ani de funcţionare;
- taxa CASCO pentru maşinile cu vechime cuprinsă între 4 – 10 ani;
- taxa CASCO pentru maşinile cu vechime mai mare de 10 ani.
Deşi se discută foarte mult, cea mai costisitoare etapă din activitatea

de manipulare a bazelor de date o reprezintă încărcarea acestora.
În cazul de faţă, datele nu suferă o uzură morală rapidă pentru că

vizează indivizii dintr-un cartier sau bloc. În cazul în care fenomenul are o
dinamică accelerată, se observă că la terminarea încărcării 60 – 80% din
date sunt uzate moral şi baza de date practic este inoperantă.

În cazul considerat, cele patru mulţimi conduc la date ce alimentează
baza de date şi se trage concluzia că în continuare ea este complet
încărcată.

Pentru a vedea puterea de prelucrare pe care software-ul bazei de
date o are, exemplificăm câteva cereri:

- listarea locurilor de muncă ale membrilor familiei lui x;
- listarea proprietarilor de autoturisme cu culoarea z;
- listarea tuturor celor care lucrează la locul de muncă w şi au

autoturisme pentru care plătesc taxa CASCO cuprinsă în intervalul
[a, b];

- există o relaţie între capitalul social al firmelor şi uzura morală a
autoturismelor pe care le au salariaţii lor?

- listarea proprietarilor care plătesc un impozit mai mare decât C lei
şi taxa CASCO mai mare decât D lei;

- există meseriaşi de tipul z care au maşini de tipul u absolut noi şi
care au vecini în aceeaşi situaţie?

Dacă toate datele despre un individ, sunt înregistrate într-o structură
cuprinzătoare, care conţine elementele de descriere ale celor patru mulţimi,
se observă o multitudine de repetări, ceea ce conduce de fapt la regruparea
informaţiilor. Cele 4 mulţimi nu sunt un dat, ci sunt rezultatul unei analize a
modului în care sunt sistematizate şi concentrate datele.

Pentru elementele din mulţimea M1 se asociază arborescenţa:

persoana x

familie vecini

soţie copii
vecinul
din faţă

vecinul
din spate

vecinul
din stânga

vecinul
din dreapta

copilul Y1 copilul Y10

Figura 18.9 Arborescenţa asociată elementelor mulţimii M1

Pentru elementele mulţimii M2 se asociază arborescenţa din figura

18.10.

Producător

Marca 1 Marca 2

Model

Marca n

Culoare An fabric.

…

Figura 18.10 Arborescenţa asociată elementelor mulţimii M2

Şi pentru elementele mulţimii M3 şi M4 se asociază, de asemenea,

arborescenţe.

Deci, dacă fiecare mulţime este concretizată în câte un fişier,
articolele în cadrul fiecărui fişier sunt legate între ele, funcţie de structura
arborescenţei asociate.

Baza de date presupune atât legături între articolele fiecărui fişier, cât
şi legături între fişiere.

Se ridică întrebarea: pentru a răspunde la toate solicitările, este
necesară constituirea unor structuri de adrese; toate structurile de adrese
sunt create de la început sau acestea se creează pe măsură ce necesităţile
de prelucrare impun acest lucru?

În fişierul persoanelor, câmpul corespunzător autoturismului conţine
şi adresa articolului ce corespunde mărcii şi culorii autoturismului.

Dacă interesează listarea proprietarilor de maşini de culoare z se,
procedează astfel:

- se construieşte şirul:

S = (s1, s2 … sn) (18.50)

unde si este adresa articolului pentru descrierea autoturismului al cărui
proprietar este persoana ai din fişierul de persoane.

- din fişierul autoturismelor se extrage subşirul:

P = (p1, p2, … pn) (18.51)

al adreselor articolelor ce corespund autoturismelor de culoare z:

P ∩ S = (sk1, sk2, … skm) (18.52)

ceea ce înseamnă că persoanele ale căror înregistrări ocupă poziţiile k1, k2,
… km cu maşini de culoare z şi afişarea:

cont (ref (ki) . nume), i = 1, 2, …, m (18.53)

conduce la tabelarea numelor de persoane care posedă maşini de culoare z.
Interogarea unei baze de date revine la constituirea mai multor şiruri,

din fiecare mulţime câte unul. Numărul de şiruri maxim este de regulă egal
cu numărul mulţimilor de articole definite.

Astfel, dacă se doreşte listarea tuturor celor care au locul de muncă w
şi au autoturism pentru care plătesc o taxă CASCO cuprinsă în intervalul [a,
b], se procedează astfel:

- se construieşte şirul adreselor persoanelor care au locul de muncă
w:

(γ j = const (w.adresa_persoanaj)), j = 1, 2, … n (18.54)

- se construieşte şirul capacităţilor cilindrice:

(C1, C2, … Ch) (18.55)

al autoturismelor, însoţite de adresele articolelor din fişierul asociat mulţimii
M2, ce corespund autoturismelor pentru capacităţile identificate:

m1 m2 … me (18.56)

De regulă, e ≥ h, întrucât există mai multe mărci de maşini cu

aceeaşi capacitate cilindrică.
Prin analiza conţinutului fişierului M4, rezultă că autoturismele pentru

care se plăteşte o taxă CASCO cuprinsă în intervalul [a, b], sunt cele care
au capacităţile cuprinse între:

[1, 1] (18.57)

[2, 2] (18.58)

Aceste limite conduc la filtrarea elementelor mulţimii C1, C2, … Ch,

astfel încât rezultă submulţimea adreselor:

m’ = {m1’, m2’, … mp’} (18.59)

de regulă p < e.

Se construieşte şirul de adrese:

u = (γi0 ≤ 1  k; cont (γ.i.adresa_autoturism)  m’) (18.60)

Scrierea elementelor şirului:

(cont (γu->nume_persoana)), u = 1, 2, …, w (18.61)

rezolvă cererea formulată iniţial.

În exemplul dat, s-a procedat la utilizarea de variabile pointer. Pentru
a face deosebire între pointerii folosiţi la referirea elementelor din memoria
internă şi pentru a evita confuziile ce apar folosind conceptul de pointer spre
fişier, întrucât este deja concentrat tipul de dată FILE. În continuare se
utilizează conceptul de pointer extern.

Fiind dat un suport extern al căror baiţi au adresa cuprinsă între
valorile [A,B]∩N, A  B şi A, B  N, variabila v se spune că este pointer
extern dacă şi numai dacă:

cont (v)  [A, B] ∩ N (18.62)

Poziţionarea citirii este de fapt atribuirea sau modificarea conţinutului

unei variabile de tip pointer extern, aşa fel încât ea să conţină adresa
baitului de unde începe citirea/scrierea.

În enunţul problemei, M1, M2, M3 şi M4 reprezintă fişiere, adică
variabile pointer care sunt iniţializate cu adresele baiţilor de unde începe
alocarea memoriei externe pentru fiecare din cele patru fişiere. Dacă se are
în vedere că fişierul are şi o etichetă de început de lungime, cont(Mi) + 
reprezintă adresa primului articol din fişierul Mi.

Presupunând că fişierului Mi i se alocă o zonă contiguă, cuprinsă între
adresele [Ai, Bi], rezultă că:

cont (Mi) = Ai (18.63)

cont ( i) = Bi – lg (SDi) (18.64)

unde i reprezintă adresa ultimului element de structură SDi al fişierului Mi
care are o etichetă de sfârşit de fişier de lungime .

Revenind la fişierele interdependente, fişierele înlănţuite, se observă
că structurile de date ce se asociază fişierelor, pe lângă informaţiile utile
date de programator, se definesc încă multe câmpuri de tip pointer extern
care asigură traversările prin structura externă pe timpul execuţiei.

Folosind definirea pointerilor extern, locul de muncă w este identificat
prin pointerul extern pw ce corespunde adresei articolului respectivului loc
de muncă.

Mulţimea m1, m2, … me, reprezintă valori ale variabilei pointer extern
r, asociat fişierului M2:

m =  rj  cont (rj->capacitate)  C1, C2, … Ch, i  j  nrr (M2) (18.65)

unde nrr() este o funcţie care defineşte numărul de articole existent într-un
fişier:

nrr : F1, F2, … Fk  N (18.66)

unde F este mulţimea fişierelor, date prin valoarea iniţială a pointerilor lor
externi:

m’ =  mi  cont (mj-> capacitate)  [1, 1] U [2, 2]  (18.67)

Selectarea elementelor reprezintă construirea de şiruri de adrese şi

apoi prin operaţii de reuniune, intersecţie, se obţin şirurile de elemente care
prezintă rezolvarea problemei.

Utilizarea bazelor de date reprezintă un domeniu al informaţiei
aplicate. Construirea de sisteme de gestiune a bazelor de date este o
preocupare de mare importanţă pentru toţi realizatorii de software, iar
elementele prezentate definesc doar o serie de trăsături generale ale
filozofiei bazelor de date.

Fiecărui mecanism particular îi corespund reguli precise de definire,
iniţializare şi modificare a pointerilor externi ce se asociază fiecărui articol.

De menţionat că în spatele oricărei cereri de informaţie furnizată de
utilizatorul bazei de date, se află pointeri externi, care în unele cazuri sunt
deja iniţializaţi şi se folosesc ca atare, iar în alte cazuri, sunt numai definiţi
şi îşi încarcă conţinutul în funcţie de cerere.

Există situaţii când pentru a rezolva o problemă, se definesc noi
pointeri externi şi se activează proceduri de iniţializare, în concordanţă cu
problema de rezolvat. În acest caz se creează noi legături între elemente,
cu noi posibilităţi de selectare a informaţiilor din baza de date.

Statistic, diversitatea de fişiere face ca utilizarea unora să fie în
anumite cazuri mai eficiente decât a altora. Experienţa fiecărui programator
este cea care hotărăşte tipul de fişier cu care se lucrează pentru fiecare
aplicaţie.

La alegerea tipului de fişier cu care se lucrează, concură o serie de
factori din care se enumără:

- numărul de elemente care alcătuiesc fişierul;
- tipul prelucrărilor: integrale, după o cheie, prin selecţie;
- frecvenţa şi tipul operaţiilor de actualizare;
- durata impusă de prelucrare şi necesitatea sortării datelor;

- timpul disponibil pentru elaborarea programelor;
- costuri de elaborare şi utilizare;
- sistemul de calcul disponibil;
- sistemele de gestiune a fişierelor cunoscute şi disponibile.
Alegerea tipului de fişier şi comportamentul algoritmilor implementaţi

pentru regăsirea informaţiilor, sunt rezultatul unei analize statistice a
datelor, înregistrate prin urmărirea în timp a comportamentului la
prelucrare.

	cont (v) ([A, B] ∩ N (18.62)

