

14. ARBORI ECHILIBRAŢI

14.1 Echilibrarea structurilor arborescente

Pentru a descrie gradul de echilibru al structurilor arborescente sunt
definite două abordări:

- arbori perfecţi echilibraţi în care pentru fiecare nod, diferenţa dintre
numărul de noduri ale subarborelui drept şi stâng ia valori în
mulţimea {-1 ; 0 ; +1}; într-un arbore perfect echilibrat de înălţime
h, toate nodurile frunză sunt pe acelaşi nivel şi orice nod de pe
nivelurile intermediare 1..h-2 are numărul maxim de fii; de exemplu,
figura 14.1 descrie un arbore binar de căutare perfect echilibrat;

23

10 27

183 2 2

Figura 14.1 Arbore binar perfect echilibrat

cea mai simplă metoda de a obţine un astfel de arbore se bazează pe
parcurgerea prin metoda divide et impera a şirului de chei ordonate
crescător şi inserarea valorii din mijloc în arbore; aceasta metoda
este ineficienta în practică deoarece presupune realizarea unui volum
mare de calcule după fiecare operaţie de inserare sau ştergere ;
efortul ridicat de prelucrare este dat de parcurgerea în inordine a
arborelui pentru a obţine şirul sortat crescător al cheilor si de
reconstrucţia structurii ; considerând un arbore binar de căutare,
metoda utilizata în acest sens, echilibrareArb, are ca parametrii şirul
sortat crescător al valorilor, vectorul chei, dimensiunea acestuia, dim,
limitele intervalului curent, stanga, respectiv, dreapta, şi rădăcina
arborelui ce va fi creat; menţinerea unei astfel de structuri reprezintă
o operaţie cu grad de complexitate foarte ridicat, fapt care conduce la
recrearea arborelui perfect echilibrat după fiecare operaţie de
inserare sau ştergere cu metoda echilibrareArb;

void echlibrareArbore(int *chei, int dim, int stanga, int dreapta,
NodArbore *&radacina){
 if (dreapta>=stanga){
 int mijloc=(dreapta+stanga)/2;
 if (dreapta-stanga==1){
 radacina =inserareArbore(radacina, chei[stanga]);
 radacina = inserareArbore (radacina, chei[dreapta]);
 }

 else{
 if (dreapta==stanga)
 radacina = inserareArbore (radacina, chei[stanga]);
 else{
 radacina = inserareArbore (radacina, chei[mijloc]);
 echlibrareArbore (chei,dim,stanga, mijloc -1, radacina);
 echlibrareArbore (chei,dim, mijloc +1,dreapta, radacina);
 }
 }
 }
}

- imperfect echilibrat în care pentru fiecare nod, diferenţa dintre
înălţimea subarborelui drept şi înălţimea subarborelui stâng ia valori
în mulţimea {-1 ; 0 ; +1}; crearea unei astfel de structuri se bazează
pe utilizarea metodei prezentate anterior pornind de la un set de
valori sortate crescător sau descrescător; menţinerea gradului de
echilibru al structurii după operaţiile de inserare sau ştergere este
posibilă prin metode cu un grad de complexitate acceptabil şi care
sunt specifice unor structuri arborescente echilibrate particulare, AVL,
arbori B, arbori Rosu & Negru; aceste metode implică un efort de
prelucrare mai mic decât volumul operaţiilor asociat reconstrucţiei
arborelui prin metoda echilibrareArb.

Structurile arborescente sunt structuri de date dinamice în care

elementele sunt poziţionate ierarhic în funcţie de legătura părinte – copil ce
există între două elemente. Din punct de vedere al minimizării efortului de
regăsire, această organizare este mai eficientă în raport cu structurile
dinamice liniare, deoarece reduce numărul de comparări necesar identificării
unui element. În cazul unei structuri de date liniare, cel mai nefavorabil caz
descrie o complexitate egală cu O(m), unde m reprezintă numărul de
elemente, şi este generat de căutarea ultimului element. Această situaţie
este întâlnită şi în cazul structurilor arborescente ineficient construite, în
care fiecare nod are maxim un fiu şi care au asociată imaginea unei liste.
Pentru a evita acest lucru şi pentru de a beneficia de efectele pozitive ale
utilizării structurilor arborescente în operaţiile de căutare se definesc reguli
stricte de realizare ale unei astfel de structuri. Prin prisma acestor reguli,
structurile arborescente se diferenţiază pe mai multe tipuri. Dintre acestea,
structurile arborescente echilibrate ocupă o pondere ridicată în dezvoltarea
de soluţii eficiente deoarece descriu un nivel constant de efort apropiat de
cel optim.

Se consideră şirul valorilor 23, 10, 27, 18, 3, 2 pe baza cărora se
defineşte un arbore binar de căutare. Structura arborescenta obţinută este
descrisă în figura 14.2.

23

10 27

183

2

Figura 14.2 Arbore binar de căutare

Din analiza modului in care sunt poziţionate valorile, situaţia cea mai

puţin favorabilă ce caracterizează acest arbore binar de căutare este data
de cazul în care nodul ce conţine cheia cu valoarea 2 are o frecvenţă ridicată
de utilizare. Situaţia este generată de faptul ca cel mai lung drum de la
nodul rădăcină la un nod frunza este dat de drumul 23 – 10 – 3 – 2, de
lungime 4. Dimensiunea este determinată de numărul de comparări
necesare identificării nodului căutat.

Pe baza unei aranjări echilibrate a valorilor, acelaşi set de valori este
reprezentat de structura arborescenta următoare

23

10

2718

3

2

Figura 14.3 Arbore binar de căutare echilibrat

Prin prisma cazului cel mai puţin favorabil, arborele din figura 14.3
este mai eficient decât cel anterior deoarece numărul maxim de comparări
necesare identificării oricărui nod din structura este egal cu 3.

În funcţie de numărul de elemente dintr-un arbore binar de căutare,
n, o structură echilibrată descrie o complexitate egală cu O(log2n) pentru
cel mai nefavorabil caz. În schimb, o structură arborescentă de acelaşi tip,
dar care nu este echilibrată, este caracterizată pentru cel mai nefavorabil
caz de o complexitate egală cu O(n).

Minimizarea efortului de regăsire a informaţiilor se obţine printr-o
aranjare echilibrata a valorilor pe ambii subarbori ai fiecărui nod.

14.2 Caracteristici ale arborilor AVL

Un arbore AVL, definit prima dată de G.M. Adelson-Velskii şi E.M.
Landis în [Ande62], este un arbore binar de căutare echilibrat pe înălţime.
Un arbore binar de căutare este AVL dacă gradul de echilibru al fiecărui nod
ia valori în mulţimea {-1,0,1}.

Pentru a măsura gradul de echilibru al unui nod se defineşte
indicatorul GE ce descrie relaţia:

GE = H(SD) – H(SS) (14.1)

unde H() reprezintă funcţia de calcul a înălţimii unei structuri
arborescente. Pentru a determina înălţimea unui arbore, al cărui nod
rădăcină este rad, se utilizează formula:

H(rad) = 1 + max (H(subarbore drept), H(subarbore stâng)) (14.2)

în care funcţia max() este utilizată pentru a determina maximul dintre două
valori.

int max(int valoare_1, valoare_2)
{

return valoare_1 < valoare_2 ? valoare_2 : valoare_1;
}

Pentru valoarea indicatorului GE = 0, nodul este echilibrat, iar pentru

valorile 1 si -1, nodul descrie un dezechilibru la dreapta, respectiv la stânga.
Figura 14.4, descrie arborele binar de căutare pentru care s-a determinat
gradul de echilibru.

Situaţiile în care GE are valoarea -1 sau 1 sunt acceptate deoarece,
pentru un număr par de valori este imposibil sa se definească un arbore
binar de căutare în care toate nodurile sunt perfect echilibrate.

23

10

2718

3

2

GE = 0

GE = -1 GE = 0

GE = 0 GE = 0 GE = 0

Figura 14.4 Arbore binar de căutare echilibrat

Arborele AVL, reprezintă un arbore binar de căutare echilibrat.
Pornind de la această ipoteza, acest tip de arbore moşteneşte toate
operaţiile implementate de arborii binari de căutare. Caracteristica de
echilibru se gestionează prin verificarea atentă a gradului de echilibru,
pentru fiecare nod în parte, în urma operaţiilor de inserare şi ştergere.

Aceste tipuri de prelucrări afectează structura arborelui şi conduc la situaţii
de dezechilibru.

Pentru a menţine arborele AVL, după fiecare operaţie de inserare,
respectiv ştergere, sunt căutate situaţiile de dezechilibru puternic,
identificate prin intermediul nodurilor pentru care indicatorul GE ia valori în
mulţimea {-2,2}.

Reechilibrarea arborelui binar de căutare şi păstrarea caracteristicilor
aferente arborilor AVL se realizează prin operaţii de rotire:

- rotire simpla la stânga;
- rotire simpla la dreapta;
- dubla rotire la stânga ;
- dubla rotire la dreapta.
Este important de reţinut că printr-o singură rotaţie, selectată în

funcţie de situaţie, un arbore AVL dezechilibrat în urma operaţiei de inserare
va fi reechilibrat. În schimb, operaţie de reechilibrare în urma ştergerii unui
nod este mult mai complexă, necesitând minim o rotaţie.

14.3 Operaţii pe arbori AVL

Determinarea metodei adecvate de reechilibrare se realizează prin
analiza gradului de echilibru a nodurilor aflate pe drumul de la rădăcina
arborelui la locaţia în care a fost inserat, respectiv şters, nodul.

Se considera situaţia din figura 14.4 în care se inserează nodul cu
cheia 1. Arborele binar obţinut este:

23

10

27 18

3

2

GE = -1

GE = -2 GE = 0

GE = -1 GE = 0 GE = 0

1

GE =0

Figura 14.5 Arbore binar AVL dezechilibrat

În urma procesului de inserarea se recalculeaza gradul de echilibru al
nodurilor ce sunt afectate. Aecstea noduri se gasesc in multimea nodurilor
{10, 3, 2, 1}. Se observa ca arborele îşi pierde caracteristica de a fi AVL
deoarece nodul cu cheia 3 are un grad de echilibru egal cu -2, ceea ce
evidenţiază un dezechilibru puternic la stânga.

Pentru a aplica procesul de echilibrare, bazat pe operaţie de rotire, se
identifica un nod, numit pivot, în care se realizează rotirea subarborelui.

Selectarea nodului pivot se face printr-o abordare jos-sus pornind de
la locaţia nodului inserat, respectiv, şters către rădăcina arborelui.
 Reechilibrarea arborelui se face cat mai aproape de locaţia care a
generat dezechilibrul. Astfel, printr-un număr minim de rotaţii se
reconstruieşte caracteristica arborelui AVL.

În figura, 14.5, nodul pivot este nodul a cărui cheie are valoarea 3.
Pentru a reechilibra arborele este nevoie să transferăm o parte din
greutatea subarborelui stâng către subarborele drept al nodului pivot.

Pentru a identifica operaţia de rotaţie corespunzătoare se analizează
gradul de echilibru al nodului pivot si cel al nodului fiu de pe direcţia
dezechilibrului. Analizând arborele din figura 14.4, se observa ca nodul
pivot, cu cheia 3, are gradul de echilibru GE = -2, ceea ce implică un
dezechilibru la stânga. Deoarece nodul fiu stânga, cu cheia 2, are
dezechilibru simplu tot la stânga, reechilibrarea se realizează prin operaţia
de rotire simplă la dreapta, figura 14.6.

X

3

2

Z

?

Y

X

3

2

Z

X - Subarbore drept
pivot

GE = -2

GE = -1

?

Y

Y - Subarbore stang
fiu dreapta pivot

NOD PIVOT

GE = 0

GE = 0

NOD FIU PE
DIRECTIA

DEZECHILIBRULUI

Figura 14.6 Procesul de rotire simplă la dreapta

Procesul de rotire simplă la dreapta implică existenţa a două
elemente principale, nodul pivot, ce este dezechilibrat puternic la stânga şi
fiul acestuia de pe direcţia dezechilibrului, care este la rândul său
dezechilibrat slab tot la stânga. Pentru a reechilibra arborele în această
situaţie este necesar şi suficient să scădem cu o unitate înălţimea
subarborelui stâng al pivotului şi să creştem cu o unitate înălţimea
subarborelui drept. Pentru a atinge acest obiectiv, se modifică cele două
legături evidenţiate în figura 14.5. Se observă că subarborele Y devine
subarbore drept pentru nodul pivot, fapt ce nu contrazice existenţa unui
arbore binar de căutare deoarece toate valorile din acest subarbore sunt
mai mici decât valoarea nodului pivot.

Prin aplicarea procesului de rotire, arborele se reechilibrează şi îşi
păstrează caracteristicile specifice unui arbore AVL şi unui arbore binar de
căutare. Se observă că prin rotaţia simplă la dreapta sunt afectate doar
gradele de echilibru ale nodului pivot şi nodului fiu de pe direcţia
dezechilibrului, nodul fiu stânga. Prin modificarea structurii arborescente,
cele două noduri devin perfect echilibrate, GE = 0. Explicaţia este dată de
faptul că nodul fiu stânga urcă pe nivelul superior în locul nodului părinte,
iar acesta, fiind nod pivot, coboară în subarborele drept. Figura 14.7

utilizează ca reper înălţimea subarborelui Y pentru a descrie modul în care
se ajunge la acest rezultat. Este evidenţiat modul de calcul al indicatorului
GE pentru a sublinia modul în care se ajunge la rezultat.

3

2

?

3

2

GE = H1 – (H1 + 2) = -2

GE = H1 – (H1 + 1) = -1

?

NOD PIVOT

GE = 0

GE = 0

H1H1+1
Z Y

H1
X

H1+1
Z

H1+2

H1
Y

H1

X

H1+1

Figura 14.7 Procesul de rotire simplă la dreapta

Metoda clasei AVLArbore ce implementează această rotaţie simplă

primeşte ca parametru referinţa la nodul pivot.

void AVLArbore::RotatieSimplaDreapta(AVLNod * &pivot)
{
 AVLNod *FiuStanga = pivot->st;
 pivot->st = FiuStanga->dr;
 FiuStanga->dr = pivot;

 pivot->Echilibru = 0;
 FiuStanga->Echilibru = 0;

 pivot = FiuStanga;
}

Aplicând această metodă arborelui analizat, rezultă structura

arborescentă din figura 14.8.

23

10

2718

2

3

GE = 0

GE = 0 GE = 0

GE = 0

GE = 0 GE = 0

1

GE =0

Figura 14.8 Arbore AVL reechilibrat

Dacă prin inserarea sau ştergerea unui nod se ajunge în situaţia din
figura 14.9, reechilibrarea arborelui se realizează printr-o rotire simplă la
stânga.

23

10

27

2

30

GE = 1

GE = -1
GE = 2

GE = 0

GE = 1 GE =0

1

Figura 14.9 Arbore AVL dezechilibrat

În această situaţie, pivotul este dat de nodul cu valoarea 23, acesta
fiind puternic dezechilibrat la dreapta, GE = 2. Deoarece nodul fiu dreapta,
este dezechilibrat slab pe aceeaşi direcţie, reechilibrarea se realizează prin
operaţia de rotire simplă la stânga.

X - Subarbore stâng
pivot

30

23

X

Y

GE = 2

GE = 1

?

Z

Y - Subarbore stang
fiu stânga pivot

NOD PIVOT

Z

30

23

Y

?

X

GE = 0

GE = 0

NOD FIU PE
DIRECTIA

DEZECHILIBRULUI

Figura 14.10 Procesul de rotire simplă la stânga

Asemănător operaţiei de rotaţie simplă la dreaptă, cele două noduri
afectate direct de reorganizarea legăturilor, nodul pivot şi fiul acestuia din
dreapta, au în final grade de echilibru egale cu valoarea zero. Reorganizarea
celor două legături evidenţiate în figura 14.10 are ca efect reducerea cu o
unitate a înălţimii subarborelui drept al nodului pivot şi creşterea cu o
unitate a subarborelui stâng.

Metoda ce implementează această operaţie, RotatieSimplaStanga, are
ca parametru de intrare referinţa nodului pivot.

void AVLArbore::RotatieSimplaStanga(AVLNod * &pivot)
{
 AVLNod *FiuDreapta = pivot->dr;
 pivot->dr = FiuDreapta->st;
 FiuDreapta->st = pivot;

 pivot->Echilibru = 0;
 FiuDreapta->Echilibru = 0;

 pivot = FiuDreapta;
}

Aplicând această operaţie arborelui din figura 14.10 se obţine
arborele AVL:

27

10

30

2

23

GE = 1

GE = -1
GE = 0

GE = 0 GE = 0 GE =0

1

Figura 14.11 Arbore AVL reechilibrat

În cazul operaţiile de rotire duble, situaţia iniţială este caracterizată
de sensuri opuse de dezechilibru pentru nodul pivot si pentru nodul său fiu
de pe direcţia dezechilibrului. Pentru a exemplifica o astfel de situaţie se
inserează în arborele AVL din figura 14.11, elementele cu valorile 16, 24,
26. Structura arborescentă obţinută este:

27

10

30

2

23

GE = 2

GE = -1

GE = -2

GE = 1 GE = 0 GE =0

1

24

26

16

GE = 1
GE = 0

GE = 0

Figura 14.12 Arbore AVL dezechilibrat

Structura arborescentă din figura 14.12 nu este arbore AVL deoarece
există noduri pentru care gradul de echilibru, GE, are valori în mulţimea
{-2, +2}. Situaţia este generată de inserarea nodului cu valoarea 26, iar
analiza drumului de la acest nod înapoi către nodul rădăcină conduce la

identificarea pivotului, nodul cu valoarea 27. Se observă că, acest nod este
puternic dezechilibrat la stânga, iar nodul fiu de pe această direcţie, nodul
23, este dezechilibrat slab pe direcţia opusă. Soluţia pentru această
problemă necesită o abordare diferită de cele două tipuri de rotiri simple
descrise, deoarece acestea nu conduc la reechilibrarea arborelui. Pentru a
exemplifica această abordare greşită se simulează o rotire simplă la dreapta
aplicată pivotului. Rezultatul obţinut este:

23

10

27

2

16

GE = 2

GE = -1
GE = 2

GE = 0 GE = -1GE =0

1

24

26

GE = 1

GE = 0

GE = 0

30

Figura 14.13 Arbore AVL dezechilibrat

Se observă că arborele, figura 14.13, este în continuare dezechilibrat,
numai că de data aceasta, dezechilibrul este în sens opus. Încercarea
reechilibrării, tot cu o rotire simplă, dar în sens opus, va conduce la
obţinerea ipotezei iniţiale, descrisă în figura 14.12.

Soluţia eficientă a acestui tip de dezechilibru este dată de aplicarea
unei rotiri duble, ce constă în aplicarea a două rotiri simple. Scopul primei
rotiri este de a rearanja structura arborescentă astfel încât direcţiile
dezechilibrului nodului pivot şi a fiului acestuia să aibă acelaşi sens. Cea de-
a doua rotire are ca obiectiv reechilibrarea arborelui. Pe baza acestor
motive, cele două rotaţii sunt aplicate unor noduri diferite. Prima rotaţie se
aplică nodului fiu al nodului pivot, nod ce se găseşte pe direcţia
dezechilibrului. Sensul acestei prime rotiri este identic cu direcţia
dezechilibrului. A două rotire simplă se aplică nodului pivot şi are sens opus
dezechilibrului.

Pentru structura arborescentă din figura 14.12, pivotul este dat de
nodul cu valoarea 27 şi acesta este puternic dezechilibrat la stânga. Pentru
a reechilibra arborele se parcurg următoarele etape:

- se analizează nodul fiu al nodului pivot pe direcţia dezechilibrului;
acest nod are valoarea 23 şi este slab dezechilibrat la dreapta;

- deoarece pivotul şi nodul fiu sunt dezechilibrate pe direcţii
diferite, reechilibrarea se realizează printr-o dublă rotaţie;

- prima rotaţie se aplică nodului fiu şi are sens identic cu
dezechilibrul nodului pivot; se observă că această operaţie
intermediară, figura 14.12.a, redefineşte situaţia aducând-o într-o
formă specifică cazurilor în care se aplică rotaţii simple;

- a doua rotaţie se aplică nodului pivot şi are sens opus
dezechilibrului.

27

10

30

2

23

GE = 2

GE = -1
GE = -2

GE = 1

GE = 0

GE =0

1

24

26

16

GE = 1 GE = 0

GE = 0

27

10

30

2

24

GE = 2

GE = -1
GE = -2

GE = -1 GE = 0 GE =0

1

26

16

23

GE = 0 GE = -1

GE = 0

NOD PIVOT

NOD FIU

A) ROTATIE SIMPLA LA STANGA B) ROTATIE SIMPLA LA DREAPTA

NOD PIVOT

24

27

2

23

GE = 1

GE = -1
GE = 0

GE = -1 GE = 0 GE =0

1

26 30 16

GE = 0 GE = 0 GE = 0

C) ARBORE REECHILIBRAT

10

Figura 14.14 Rotaţia dublă la dreapta

Din analiza dublei rotaţii la dreapta sunt evidenţiate 3 elemente
importante, în funcţie de care sunt reiniţializate o serie de legături:

- nodul pivot, puternic dezechilibrat la stânga, GE = -2;
- fiul stânga la pivotului, FiuStanga ,ce este slab dezechilibrat la

dreapta, GE = 1;
- fiul dreapta al nodului FiuStanga, notat cu FiuStanga_FiuDreapta;

în funcţie de situaţie, acest nod prezintă un grad de echilibru ce ia
valori în mulţimea {-1, 0 , 1}.

Pentru a determina gradul de echilibru final al nodurilor afectate de
dubla rotaţie, se analizează modul în care se distribuie înălţimea
subarborilor în urma rotaţiilor. Tabelul 14.1 descrie situaţiile iniţiale şi
rezultatele la care se ajunge în urma reechilibrării.

Tabelul nr. 14.1 Rezultatul operaţiei de dublă rotaţie la dreapta

Situaţie iniţială Situaţie finală
Pivot FiuStanga FiuStanga_FiuDreapta Pivot FiuStanga FiuStanga_FiuDreapta

-2 +1 -1 1 0 0
-2 +1 0 0 0 0
-2 +1 +1 0 -1 0

Situaţia descrisă în tabelul anterior este utilizată pentru a defini mai eficient
metoda care implementează acest tip de rotaţie. Astfel este evitat efortul
suplimentar de a recalcula gradul de echilibru pentru cele trei noduri
afectate.

Clasa AVLArbore implementează această operaţie prin intermediul
metodei RotatieDublaDreapta ce primeşte ca parametrul referinţa nodului
pivot.

void AVLArbore::RotatieDublaDreapta(AVLNod * &pivot)
{
 AVLNod *FiuStanga, *FiuStanga_FiuDreapta;
 FiuStanga = pivot->st;
 FiuStanga_FiuDreapta = FiuStanga->dr;

 //realizare rotatie 1 - simpla stanga
 FiuStanga->dr = FiuStanga_FiuDreapta->st;
 FiuStanga_FiuDreapta->st = FiuStanga;
 //realizare rotatie 2 - simpla dreapta
 pivot->st = FiuStanga_FiuDreapta->dr;
 FiuStanga_FiuDreapta->dr = pivot;

 //modificare grade de echilibru
 if(FiuStanga_FiuDreapta->Echilibru == 1)
 {
 pivot->Echilibru = 0;
 FiuStanga->Echilibru = -1;
 }
 else
 if(FiuStanga_FiuDreapta->Echilibru == 0)
 {
 pivot->Echilibru = 0;
 FiuStanga->Echilibru = 0;
 }
 else
 {
 pivot->Echilibru = 1;
 FiuStanga->Echilibru = 0;
 }

 FiuStanga_FiuDreapta->Echilibru=0;

 pivot = FiuStanga_FiuDreapta;
}

Structura arborescentă este modificată prin ştergerea nodului cu
valoarea 16 şi prin adăugarea unei noi valori, 25. Arborele obţinut, descris
în figura 14.15, încetează să mai fie AVL în urma aplicării ultimei modificări.

24

27

2

23

GE = 2

GE = -1
GE = 2

GE = -1 GE = -1GE =0

1

26 30

25

GE = -1

GE = 0

GE = 0

10

Figura 14.15 Arbore AVL dezechilibrat

Se observă că există două noduri, cu valoarea 24 şi 10, ce descriu

dezechilibre puternice, GE = 2, la dreapta. Analizând, de jos în sus, drumul
de la noul nod inserat la rădăcină arborelui, se stabileşte ca fiind pivot nodul
cu valoarea 24. În mod asemănător cu situaţia descrisă anterior, fiul
pivotului de pe direcţia dezechilibrului este dezechilibrat uşor în sens opus.
Tentativa de a rezolva situaţia prin intermediul unei rotaţii simple nu
conduce la soluţionarea problemei reechilibrării deoarece are ca rezultat
mutarea dezechilibrului pe partea stângă.

Având în vedere condiţiile de lucru, reechilibrarea arborelui din figura
14.15 presupune:

- aplicarea unei rotaţii simple la dreapta în nodul fiu al pivotului;
dacă pivotul are ambii fii atunci rotaţia se face în toate situaţiile
asupra nodului fiu de pe direcţia dezechilibrului; deoarece pivotul
este dezechilibrat puternic la dreapta, nodul fiu selecta este 27;

- aplicarea unei rotaţii simple la stânga, în sens opus
dezechilibrului, în nodul pivot.

24

27

2

23

GE = 2

GE = -1
GE = 2

GE = -1 GE = -1GE =0

1

26 30

25

GE = -1

GE = 0

GE = 0

10

NOD PIVOT

NOD FIU

A) ROTATIE SIMPLA LA DREAPTA

24

26

2

23

GE = 2

GE = -1
GE = 2

GE = -1 GE = 1 GE =0

1

25 27

30

GE = 0

GE = 0

GE = 1

10

NOD PIVOT

NOD FIU

B) ROTATIE SIMPLA LA STANGA

26

27

2

24

GE = 1

GE = -1
GE = 0

GE = 0 GE = 1

1

25 30

GE = 0

GE = 0

GE = 0

10

23

GE =0

C) ARBORE REECHILIBRAT

Figura 14.16 Rotaţia dublă la stânga

Pentru a implementa o soluţie software care să gestioneze datele prin

intermediul unui arbore binar de căutare echilibrat de tip AVL, trebuie să fie
dezvoltate rutine complementare operaţiilor de inserare şi ştergere în arbori
binari de căutare care să reechilibreze structura arborescentă aflată în una
din cele patru situaţii descrise.

Tabelul 14.2 sintetizează situaţiile de dezechilibru şi modul în care
arborele AVL este menţinut în urma operaţiilor de inserare.

Tabelul nr. 14.2 Situaţii dezechilibru arbori AVL

Grad
echilibru nod

pivot

Nod fiu
analizat

Grad
echilibru
nod fiu

Rotire

+2 dreapta +1 Simplă la stânga
+2 dreapta -1 Dublă la stânga: rotire simplă la

dreapta în fiul din dreapta al pivotului;
rotire simplă la stânga în pivot.

-2 stânga -1 Simplă la dreapta
-2 stânga +1 Dublă la dreapta: rotire simplă la

stânga în fiul din stânga al pivotului;
rotire simplă la dreapta în pivot.

Dezvoltarea de aplicaţii care implementează lucrul cu arbori de tip

AVL se bazează pe dezvoltarea unei biblioteci de cod în care sunt definite
clasele AVLNod şi AVLArbore. Clasa AVLNod descrie atributele şi metodele
unui obiect ce reprezintă nodul unui arbore binar de căutare echilibrat.

class AVLNod
{
private:
 int Echilibru;
 int Info;
 AVLNod *st;
 AVLNod *dr;

public:
 //constructorii clasei
 AVLNod(void);
 AVLNod(int echilibru, int info, AVLNod * stanga, AVLNod *
dreapta);

//destructorul clasei
 virtual ~AVLNod(void);

 //interfata pentru atributul Echilibru
 int GetEchilibru(void){return this->Echilibru;};

// acces la atributele private din clasa AVLArbore
 friend class AVLArbore;
 //acces la atributele private din clasa AVLNodeStack

friend class AVLNodeStack;
};

În comparaţie cu nodul unui arbore binar de căutare, această clasă

defineşte o proprietate nouă, Echilibru, utilizată pentru a gestiona gradul de
echilibru asociat fiecărui nod. Atributele Info, st şi dr sunt utilizate pentru a
memora valoarea nodului curent şi pentru a face legătură între nodul
părinte şi nodul fiu stânga, respectiv, dreapta.
Cele două metode constructor

AVLNod::AVLNod(void)
{
 Echilibru = 0;
 Info = 0;
 st = NULL;
 dr = NULL;

}
AVLNod::AVLNod(int echilibru, int info, AVLNod * stanga, AVLNod *
dreapta)
{
 Echilibru = echilibru;
 Info = info;
 st = stanga;
 dr = dreapta;
}

permit programatorilor crearea şi iniţializarea unui nod al arborelui cu valori
implicite sau pe baza unor parametrii de intrare.

Clasa AVLArbore defineşte atributele şi metodele unui obiect de tip
arbore AVL. Acesta gestionează structura dinamică de elemente prin
intermediul referinţei către nodul rădăcină, radacina.

class AVLArbore
{
public:
 AVLNod *radacina;
public:

 //constructorul clasei
 AVLArbore(void);
 //constructorul de copiere al clasei
 AVLArbore(const AVLArbore & arbore);
 //destructorul clasei
 virtual ~AVLArbore(void);
 //operatorul =
 AVLArbore operator = (AVLArbore & arbore);

 //metodele clasei pentru inserare/stergere nod
 void Insert(const int info);
 void Delete(const int info);

 //metoda pentru afisarea arborelui
 static void AfisareArbore(AVLNod * rad);

 //metoda pentru stergerea arborelui
 void StergereArbore(AVLNod * &rad);

private:
 void AVLInsert(AVLNod* &arbore,AVLNod * nodNou, int &
echilibruNou);
 void AVLDelete(AVLNod* &arbore,const int Info,AVLNodeStack
&stiva);

 //rotatii simple utilizate la inserare
 void RotatieSimplaDreapta(AVLNod * &pivot);
 void RotatieSimplaStanga(AVLNod * &pivot);

 //rotatii simple utilizate la stergere
 void RotatieSimplaDreaptaStergere(AVLNod * &pivot);
 void RotatieSimplaStangaStergere(AVLNod * &pivot);

 void RotatieDublaDreapta(AVLNod * &pivot);
 void RotatieDublaStanga(AVLNod * &pivot);

 //metodele clasei pentru reechilibrarea arborelui

 void ReechilibrareSubarboreStang(AVLNod * &pivot, int
&echilibruNou);
 void ReechilibrareSubarboreDrept(AVLNod * &pivot, int
&echilibruNou);

 //metoda utilizata pentru copierea arborelui
 void CopiereArbore(AVLArbore &arboreNou, AVLNod * rad);

//metoda inserare a unui arbore binar de cautare
 AVLNod * Inserare(AVLNod *rad, const int Valoare, int echilibru
= 0);
 static int Stergere(AVLNod*& Subarbore, AVLNodeStack &stiva);

 //metoda pentru determinarea inaltimii unui arbore
 int inaltime(AVLNod * radacina);

//metoda ce determina maximul dintre doua valori
 int max(int a, int b){return a < b? b : a;}

//metoda ce determina gradul de echilibru al nodului
 int CalculeazaEchilibru(AVLNod *& radacina);

//metoda recalculeaza gradul de echilibru pentru toate nodurile
 void RecalculeazaEchilibrul(AVLNod *&rad);
};

O atenţie deosebită se acordă formei dată de programator a

constructorului de copiere şi a operatorului =. Necesitatea este dată de
existenţa atributului dinamic AVLNod *radacina şi de efectele negative pe
care le au formele implicite ale acestor două metode asupra programului.
Programatorul trebuie să se asigure că în situaţiile în care aceste două
metode sunt apelate se vor crea structuri noi cu valori egale şi nu se vor
face doar simple iniţializări de referinţe către aceeaşi zonă de memorie.

Copierea arborelui presupune parcurgerea structurii existente, cu
păstrarea caracteristicilor acesteia. Din acest motiv, cele două metode se
bazează pe o parcurgere în preordine a arborelui existent, completată de
inserarea nodului curent în structura nou creată. Spre deosebire de
parcurgere în inordine şi postordine, parcurgere în preordine asigură
crearea unui nou arbore binar de căutare identic cu structura sursă şi cu
minim de efort.

Se consideră structura arborescentă din figura 14.17 pentru care se
obţin şirurile valorilor elementelor, parcurgând arborele prin cele trei
metode cunoscute.

23

10

2718

3

2

Preordine: 10, 3, 2, 23, 18, 27
Inordine: 2, 3, 10, 18, 23, 27
Postordine: 2, 3, 18, 27, 23, 10

Figura 14.17 Structură arborescenta de tip AVL

Prin inserarea valorilor într-o nouă structură arborescentă, pe măsură

ce acestea sunt accesate şi analizate, se obţin cei trei arbori binari de
căutare din figura 14.18.

3

2

10

18

23

27

23

10

27 18

3

2

3

18

273

23

2

A) Arbore obţinut în urma
parcurgerii în preordine

B) Arbore obţinut în urma
parcurgerii în inordine

C) Arbore obţinut în urma
parcurgerii în postordine

Figura 14.18 Structuri arborescente binare

Se observă că, dintre cele trei metode de parcurgere a unui arbore
binar, cea mai potrivită pentru operaţia de copiere este abordarea în
preordine. Celelalte două metode necesită un efort suplimentar de
rearanjare a nodurilor şi nu asigură obţinerea unei arbore identic cu sursa.
Din punct de vedere al reechilibrării, efortul este mult mai mare datorită
prelucrărilor suplimentare.

Metoda CopiereArbore construieşte copia arborelui radArboreVechi
parcurgând-ul în preordine.

void AVLArbore::CopiereArbore(AVLArbore &arboreNou, AVLNod
*radArboreVechi)
{
 if(radArboreVechi!=NULL)
 {
 arboreNou.radacina =
arboreNou.Inserare(arboreNou.radacina,radArboreVechi->Info,
radArboreVechi->Echilibru);
 CopiereArbore(arboreNou, radArboreVechi->st);
 CopiereArbore(arboreNou, radArboreVechi->dr);
 }
}

Metoda anterioră, se bazează pe parcurgerea recursivă a arborelui
curent şi apelează rutina Inserare specifică arborilor binari de văutare
pentru a insera o valoare într-o nouă structură arborescentă gestionată prin
pointerul arboreNou.

AVLNod * AVLArbore::Inserare(AVLNod *rad, const int Valoare, int
echilibru)
{
 if(rad == NULL)
 {
 rad = new AVLNod(echilibru,Valoare, NULL, NULL);
 }
 else
 if(rad->Info<Valoare)
 rad->dr = Inserare(rad->dr,Valoare,echilibru);

 else
 if(rad->Info>Valoare)
 rad->st = Inserare(rad->st,Valoare,echilibru);
 return rad;
}

Formele explicite ale constructorului de copiere şi a operatorului de
egal implementează rutina de copiere a unui arbore pentru a genera noi
structuri arborescente cu valori identice.

AVLArbore::AVLArbore(const AVLArbore &arbore)
{
 this->radacina = NULL;
 CopiereArbore((*this),arbore.radacina);
}

Spre deosebire de constructorul de copiere, operatorul = presupune
ştergerea arborelui existent şi recrearea acestuia prin copierea valorilor
structurii arbore.

AVLArbore AVLArbore::operator = (AVLArbore & arbore)
{
 StergereArbore(this->radacina);
 CopiereArbore((*this),arbore.radacina);
 return *this;
}

Metoda utilizată pentru ştergerea arborelui AVL este dată de operaţia
specifică structurilor arborescente binare, ce realizează eliberarea memoriei
de jos în sus, pornind cu nodurile frunză.

void AVLArbore::StergereArbore(AVLNod * &rad){
 if(rad!=NULL){
 StergereArbore(rad->st);
 StergereArbore(rad->dr);
 delete rad;
 rad = NULL;
 }
}

Operaţia de inserare în arborii AVL este derivată din metoda specifică
arborilor binari de căutare. Operaţiile suplimentare sunt necesare procesului
de reechilibrare şi de conservare a caracteristicii acestui tip de structură,
menţinerea gradului de echilibru în mulţimea {-1; 0; 1} pentru toate
nodurile arborelui.

Metoda AVLInsert parcurge o serie de etape necesare inserării unui
nou nod, nodNou, într-un arbore de tip AVL, gestionat prin intermediul
pointerului arbore:

- dacă arborele este vid, noul nod devine rădăcina arborelui AVL;
- dacă arborele există, se caută poziţia noului nod prin parcurgerea

acestuia asemenea unui arbore binar de căutare; parcurgerea
este recursivă, accesându-se nodul fiu stânga sau dreapta funcţie
de rezultatul comparării valorii nodului nou cu valoarea nodului
curent;

- se recalculează gradul de echilibru pentru toate nodurile parcurse;
fiind un proces recursiv, revenirea din apelul rutinei asigură
poziţionarea pe nodul anterior; variabilele echilibruNou şi
Reechilibrare indică faptul că a avut loc o modificare de structură
în apelul anterior, lucru care poate conduce la dezechilibre; în
cazul în care aceste variabile sunt iniţializate cu valoare 1, este
testat gradul de echilibru al nodului curent;

void AVLArbore::AVLInsert(AVLNod* &arbore,AVLNod * nodNou, int &
echilibruNou){
 int Reechilibrare;

 if(arbore == NULL){
 arbore = nodNou;
 arbore->Echilibru = 0;
 echilibruNou = 1;
 }
 else
 if(nodNou->Info<arbore->Info){
 AVLInsert(arbore->st,nodNou,Reechilibrare);
 if(Reechilibrare){
 if(arbore->Echilibru == -1)

 ReechilibrareSubarboreStang(arbore,echilibruNou);

 else
 if(arbore->Echilibru == 0){
 arbore->Echilibru = -1;
 echilibruNou = 1;
 }
 else{
 arbore->Echilibru = 0;
 echilibruNou = 0;
 }
 }
 else
 echilibruNou = 0;
 }
 else{
 if(nodNou->Info>arbore->Info){
 AVLInsert(arbore->dr, nodNou, Reechilibrare);
 if(Reechilibrare){
 if(arbore->Echilibru == -1){
 arbore->Echilibru = 0;
 echilibruNou = 0;
 }
 else
 if(arbore->Echilibru == 0){
 arbore->Echilibru = 1;
 echilibruNou = 1;
 }
 else

 ReechilibrareSubarboreDrept(arbore,echilibruNou);
 }
 else
 echilibruNou = 0;
 }
 else
 echilibruNou = 0;

}}

- identificarea nodului dezechilibrat, pivotul operaţiilor de rotire,

este realizată doar dacă variabila Reechilibrare este setată, prin
verificarea elementelor vizitate;

- dacă nodul curent are gradul de echilibru egal cu -1 iar nodul nou
a fost inserat în subarborele stâng, are loc reechilibrarea acestuia
prin apelul metodei ReechilibrareSubarboreStang;

- dacă nodul curent are gradul de echilibru egal cu 0 sau +1 iar
nodul nou a fost inserat în subarborele stâng, atunci noul grad de
echilibru al elementului curent este -1, respectiv 0; prin
iniţializarea variabilei echilibruNou cu valoare 1 se continuă
verificarea dezechilibrului la nodurile superioare; dacă nodul
curent devine perfect echilibrat, se opreşte verificarea în acest
punct, iar echilibruNou ia valoarea 0;

- dacă nodul curent are gradul de echilibru egal cu +1 iar nodul nou
a fost inserat în subarborele drept, are loc reechilibrarea acestuia
prin apelul metodei ReechilibrareSubarboreDrept;

- dacă nodul curent are gradul de echilibru egal cu 0 sau -1 iar
nodul nou a fost inserat în subarborele drept, atunci noul grad de
echilibru al elementului curent este +1, respectiv 0; asemenea
situaţiei anterioare, variabila echilibruNou condiţionează prin
valorile ei continuarea sau încetarea procesului de căutare;

- metoda ReechilibrareSubarboreStang ia în considerare toate
situaţiile posibile de dezechilibru către stânga şi în funcţie de tipul
acesteia reechilibrează subarborele cu rădăcina în nodul pivot prin
rotaţie simplă la dreapta, metoda RotatieSimplaDreapta, sau prin
rotaţie dublă la dreapta, metoda RotatieDublaDreapta; se observă
caracterul general al acestei metode de reechilibrare ce este
utilizată şi la ştergerea unui nod, procesul fiind descris în
continuare;

void AVLArbore::ReechilibrareSubarboreStang(AVLNod * &pivot, int
&echilibruNou){
 AVLNod * FiuStanga = pivot->st;

 if(FiuStanga->Echilibru == -1){
 RotatieSimplaDreapta(pivot);
 echilibruNou = 0;
 }
 else
 if(FiuStanga->Echilibru == 1){
 RotatieDublaDreapta(pivot);
 echilibruNou = 0;
 }
 else
 //situatie specifica operatiei de stergere
 if(FiuStanga->Echilibru == 0){
 RotatieSimplaDreaptaStergere(pivot);
 echilibruNou = 0;
 }
}

- metoda ReechilibrareSubarboreDrept analizează cazurile de
dezechilibru la dreapta, reechilibrând pivotul prin una din cele
două tehnici de rotaţie la stânga;

void AVLArbore::ReechilibrareSubarboreDrept(AVLNod * &pivot, int
&echilibruNou){
 AVLNod * FiuDreapta = pivot->dr;

 if(FiuDreapta->Echilibru == 1){
 RotatieSimplaStanga(pivot);
 echilibruNou = 0;
 }
 else
 if(FiuDreapta->Echilibru == -1){
 RotatieDublaStanga(pivot);
 echilibruNou = 0;
 }
 else
 //situatie specifica operatiei de stergere
 if(FiuDreapta->Echilibru == 0){
 RotatieSimplaStangaStergere(pivot);
 echilibruNou = 0;
 }
}

Metoda AVLInsert este o metodă internă clasei. Aceasta este epelată
din programul principal de către metoda publică Insert ce primeşte ca
parametru valoarea de inserat în arborele AVL.

void AVLArbore::Insert(const int info)
{
 AVLNod* RadacinaArbore = this->radacina;
 AVLNod* NodNou = new AVLNod(0,info,NULL,NULL);

 int EchilibruNou = 0;

 AVLInsert(RadacinaArbore,NodNou,EchilibruNou);

 this->radacina = RadacinaArbore;
}

Spre deosebire de operaţie de inserare, care necesită maxim o
singură rotaţie pentru remedierea dezechilibrului, în cazul procedurii de
ştergere a unui nod sunt necesare mai multe operaţii de rotaţie pentru a
reechilibra arborele AVL şi pentru a conserva caracteristicile acestuia.
Etapele parcurse se concentrează pe analiza tuturor nodurilor direct
influenţate

- se identifică nodul de şters pe baza caracteristicilor arborilor
binari de căutare;

- pe măsură ce se parcurge arborele, nodurile vizitate sunt salvate
într-o structură de tip stivă; această operaţie suplimentară este
necesară pentru a permite reconstruirea în sens invers a drumului
parcurs de la rădăcina arborelui;

struct NodeStack
{
 AVLNod* Nod;
 NodeStack *next;
};

class AVLNodeStack
{
private:
 NodeStack * VarfStiva;
public:
 AVLNodeStack()
 {
 VarfStiva=NULL;
 }

 void PUSH(AVLNod* &NodNou){
 NodeStack *elementNou= new NodeStack;
 elementNou->Nod = NodNou;
 if(this->VarfStiva==NULL){
 this->VarfStiva = elementNou;
 elementNou->next=NULL;
 }
 else
 {
 elementNou->next = this->VarfStiva;
 this->VarfStiva = elementNou;
 }
 }

 AVLNod* POP(){
 if(this->VarfStiva==NULL)
 return NULL;
 else
 {
 NodeStack *elementSters = this->VarfStiva;
 AVLNod* NodAuxiliar = this->VarfStiva->Nod;
 this->VarfStiva = this->VarfStiva->next;
 delete elementSters;
 return NodAuxiliar;
 }

 }
 void AfiseazaStiva()
 {
 NodeStack *temp = this->VarfStiva;
 while(temp!=NULL)
 {
 printf("\n Nod in stiva este %d",temp->Nod->Info);
 temp=temp->next;
 }
 }
};

- nodul se şterge în mod asemănător cu operaţia asociată arborilor

binari de căutare; dacă nodul este frunză se şterge efectiv; dacă
nodul are un singur fiu, acesta îl înlocuieşte în structură; dacă
nodul are cei doi fii, este înlocuit de nodul cu valoarea cea mai
mare din subarborele drept, metoda Stergere;

int AVLArbore::Stergere(AVLNod*& SubarboreDrept, AVLNodeStack &stiva)
{
 if(SubarboreDrept->st)
 {
 stiva.PUSH(SubarboreDrept);
 return AVLArbore::Stergere(SubarboreDrept->st,stiva);
 }
 else
 {
 AVLNod * NodSters= SubarboreDrept;
 int valoare = SubarboreDrept->Info;
 SubarboreDrept = SubarboreDrept->dr;
 delete NodSters;
 return valoare;
 }
}

- sunt analizate toate nodurile parcurse şi sunt reechilibrate
situaţiile de dezechilibru luând în calcul ipotezele de aplicare a
celor patru tipuri de rotaţii; operaţia de ştergere se încheie în
momentul în care sunt verificate toate locaţiile de dezechilibru
posibil; pentru abordarea aleasă ca soluţie în acest capitol,
operaţia se consideră încheiată în momentul în care stiva este
golită;

- din analiza metodei Stergere, se observă că în etapa de
identificare a nodului cu valoarea ce mai mare din subarborele
drept, ce va lua locul nodului de şters, este completată de
salvarea în stiva utilizată a nodurilor vizitate; necesitatea acestei
operaţii suplimentare este dată de faptul că ştergerea unui nod
poate conduce la dezechilibrarea nodurilor superioare aflate pe
drumul de la rădăcină la poziţia lui; de asemenea, reechilibrarea
unui nod părinte poate conduce la generarea unei alte situaţii de
dezechilibru; pentru a exemplifica această situaţie, se ia în
considerare arborele AVL din figura 14.19 în care se şterge nodul
cu valoarea 50;

47

35

5037

22

16

42

31

9 27 32

29
GE =0

GE =0 GE =0

GE =0

GE =0
GE = -1

GE = -1GE = -1

GE = 1

GE = 1

GE = -1

GE = -1
47

35
stiva

Figura 14.19 Structură arborescenta de tip AVL

Prin ştergerea nodului cu valoarea 50, se obţine stiva cu valorile 47 şi
35. Din analiza acestor noduri, se observă că arborele AVL, descris în figura
14.20, devine dezechilibrat în nodul cu valoarea 47.

47

35

37

22

16

42

31

9 27 32

29
GE =0

GE =0 GE =0GE =0
GE = -1

GE = -1 GE = -1

GE = 1

GE = 1

GE = -2

GE = -1 35 stiva

37

35

42

22

16 47 31

9 27 32

29
GE =0

GE =0

GE =0

GE =0
GE = -1

GE = -1GE = -1

GE = 1

GE = 0

GE =0

GE = -2

Figura 14.20 Structură arborescenta de tip AVL dezechilibrată

Prin reechilibrare, aplicând o rotaţie simplă la dreapta în pivot, se
obţine o nouă situaţie de dezechilibru în următoare valoare din stivă, 35,
figura 14.20. Printr-o rotaţie simplă la dreapta în nodul cu valoarea 35
considerat pivot, arborele AVL este reechilibrat. Deoarece stiva a fost golită,
operaţie de ştergere se consideră încheiată, figura 14.21.

GE =0

GE = -1

37

35

42

22

16 4731

9 27 32

29
GE =0

GE =0

GE =0

GE =0
GE = -1

GE = -1GE = -1

GE = 1

GE = 0

GE =0

GE = -2

GE =0

37

35

42

22

16

47

31

9

27 32

29

GE =0 GE =0

GE =0

GE = -1

GE =0

GE = 1

GE = 0

GE =0

(1)

(2)

Figura 14.21 Structură arborescenta de tip AVL

Există cazuri în care prin ştergerea unui nod, se ajunge la situaţii de
dezechilibru diferite de ipotezele analizate la operaţia de inserare. Luând în
considerare arborele AVL din figura 14.22, se propune ştergerea nodului cu
valoarea 16.

GE =0

19

17

16 20

23

GE =0

GE = 1

GE = 0

GE =0 GE =0

19

17

20

23

GE = 2

GE = 0

GE =0

GE = -1

19

20

23 17
GE = 0

GE =0

GE = -1

Figura 14.22 Ştergere din structură arborescenta de tip AVL

Situaţia diferă de cele întâlnite la inserare prin faptul că în acest
dezechilibru pivotul are un grad de echilibru egal cu +2, iar nodul fiu de pe
direcţia dezechilibrului are un echilibru egal cu 0. Soluţia acestui
dezechilibru este dat de o rotaţie simplă în pivot la stânga.

Din acest motiv, metodele clasei AVLArbore, destinate analizei şi
implementării tipului de rotaţie potrivit, sunt modificate în cazul operaţiei de
ştergere. Cele două metode descrise anterior , ReechilibrareSubarboreDrept
şi ReechilibrareSubarboreStang analizează şi situaţiile particulare în care
nodul de pe direcţia dezechilibrului are gradul de echilibru egal cu zero, caz
în care sunt apelate metodele RotatieSimplaDreaptaStergere şi
RotatieSimplaStangaStergere.

void AVLArbore::RotatieSimplaDreaptaStergere(AVLNod * &pivot)
{
 AVLNod *FiuStanga = pivot->st;
 pivot->st = FiuStanga->dr;
 FiuStanga->dr = pivot;

 pivot->Echilibru += 1;
 FiuStanga->Echilibru += 1;

 pivot = FiuStanga;
}

void AVLArbore::RotatieSimplaStangaStergere(AVLNod * &pivot)
{
 AVLNod *FiuDreapta = pivot->dr;
 pivot->dr = FiuDreapta->st;
 FiuDreapta->st = pivot;

 pivot->Echilibru -=1;
 FiuDreapta->Echilibru -= 1;

 pivot = FiuDreapta;
}

Pentru a implementa operaţia de ştergere, se defineşte în clasa
AVLArbore metoda Delete.

void AVLArbore::Delete(const int Info)
{
 int valTemp;

//definesc stiva nodurilor parcurse
 AVLNodeStack stiva;

//se sterge nodul
AVLDelete(this->radacina,Info,stiva);

//se analizeaza nodurile parcurse
AVLNod *temp = stiva.POP();
while(temp!=NULL){
 temp->Echilibru = this->CalculeazaEchilibru(temp);
 if(temp->Echilibru==2){

 AVLNod *parinte = stiva.POP();
 if(parinte!=NULL){
 if(parinte->dr==temp)
 this->ReechilibrareSubarboreDrept(parinte->dr,valTemp);
 else
 this->ReechilibrareSubarboreDrept(parinte->st,valTemp);
 parinte->Echilibru=this->CalculeazaEchilibru(parinte);
 }
 }

 else
 if(temp->Echilibru==-2){
 AVLNod *parinte = stiva.POP();
 if(parinte!=NULL){
 if(parinte->dr==temp)
 this->ReechilibrareSubarboreStang(parinte->dr,valTemp);
 else
 this->ReechilibrareSubarboreStang(parinte->st,valTemp);
 parinte->Echilibru=this->CalculeazaEchilibru(parinte);
 }
 }
 temp=stiva.POP();
 }
}

Această metodă se bazează pe apelul metodei AVLDelete pentru a
realiza ştergerea efectivă a nodului dorit, secvenţa de cod asociată fiind
concentrată pe analiza nodurilor din stiva. Pentru fiecare din acestea, se
recalculează gradul de echilibru prin intermediul metodei
CalculeazaEchilibru.

int AVLArbore::CalculeazaEchilibru(AVLNod *& radacina)
{
 return inaltime(radacina->dr) - inaltime(radacina->st);
}

Metoda AVLDelete completează metoda întâlnită la ştergerea
nodurilor din arbori binari de căutare prin gestiunea unei stive în care sunt
inserate toate valorile întâlnite.

void AVLArbore::AVLDelete(AVLNod* &arbore,const int Info,AVLNodeStack
&stiva){
 AVLNod *NodAuxiliar;
 if(arbore){
 if(Info == arbore->Info){
 NodAuxiliar = arbore;
 if(!NodAuxiliar->dr){
 arbore = NodAuxiliar->st;
 delete NodAuxiliar;
 }
 else
 if(!NodAuxiliar->st){
 arbore = NodAuxiliar->dr;
 delete NodAuxiliar;
 }
 else{
 stiva.PUSH(arbore);
 arbore->Info = AVLArbore::Stergere(arbore->dr,stiva);
 }
 }
 else
 if(Info < arbore->Info){
 stiva.PUSH(arbore);
 AVLDelete(arbore->st,Info,stiva);
 }
 else{
 stiva.PUSH(arbore);
 AVLDelete(arbore->dr,Info,stiva);
 }

 } }

În ciuda efortului asociat implementării şi executării secvenţelor de rotire
ale structurii, arborii AVL oferă un ridicat nivel de eficienţă în ceea ce
priveşte procesul de căutare în arbori binari de căutare. Structura
arborescentă echilibrată

14.4 Caracteristici ale arborilor Roşu & Negru

 Arborii Roşu & Negru reprezintă o altă tipologie de arbori binari de
căutare echilibraţi, fiind prima dată definiţi de Rudolf Bayer în 1972 sub
forma de arbori simetrici. Asemenea arborilor AVL, această structură este
caracterizată de o complexitate a operaţiei de căutare egală cu O(log n), n
fiind numărul de noduri din arbore, datorită modului în care nodurile sunt
plasate în mod simetric în subarborii stângi sau drepţi.

Spre deosebire de arborele AVL, în care principala caracteristică se
determină pe baza gradului de echilibru al fiecărui nod, în structurile
arborescente de tip Rosu & Negru, factorul cel mai important este dat de
culoarea fiecărui nod:

- fiecare nod are una dintre cele două culori, roşu sau negru;
- nodul rădăcină este întotdeauna negru;
- ambele noduri fiu ale unui nod părinte roşu sunt negre; un nod

roşu nu poate avea ca părinte decât un nod negru;
- toate drumurile de la rădăcină la oricare din nodurile frunză conţin

acelaşi număr de noduri negre.
Analizând aceste caracteristici sunt derivate proprietăţi noi care să fie

utilizate în implementarea algoritmilor sau care să evidenţieze eficienţa
acestui tip de structură faţă de un arbore binar de căutare:

- în arborele Roşu & Negru nu există pe un drum două noduri
adiacente de culoare roşie deoarece orice nod roşu are ambii fii
de culoare neagră;

- dacă se consideră că cel mai scurt drum din arbore are numai
noduri negre în număr de k, atunci cel mai lung drum din arbore
are maxim dublu noduri, 2 * k; ipoteza este demonstrată pe baza
faptului că toate drumurile din acest tip de structură au acelaşi
număr de noduri negre, fapt care conduce la concluzia că drumul
cel mai lung poate fi format doar din perechi de noduri adiacente
de culori opuse, figura 14.23.

23

15

2718

3

2

negru

roşu roşu

negru negru negru

Figura 14.23 Structură arborescenta de tip Roşu & Negru

Pentru a facilita implementarea operaţiilor cu structuri arborescente
de tip Rosu & Negru se propune o structură asociată nodului, clasa RNNode

class RNNod
{
 int Info;

bool Culoare;
 RNNod *st;
 RNNod *dr;
 RNNod *parinte;

};

Elementele de tip RNNode includ pe lângă atributele întâlnite la toate
structurile arborescente binare:

- informaţia utilă;
- cele două legături către nodurile fiu din stânga, respectiv,

dreapta;
şi informaţia ce descrie culoare nodului, precum şi o legătură suplimentară
către nodul părinte. Această abordare contribuie la implementarea mult mai
facilă a operaţiilor de inserare sau ştergere, minimizând în timp real efortul
de a identifica nodul părinte al nodului curent.

14.5 Operaţii pe arbori Roşu & Negru

Operaţiile pe arborii Roşu şi Negru descrise, inserare şi ştergere, sunt
realizate asemenea arborilor binari de căutare deoarece acest tip de arbore
este o structură binară particulară. Asigurarea caracteristicilor specifice
acestui tip de structură arborescentă este realizată printr-o serie de operaţii
auxiliare şi complementare procesului de inserare sau ştergere ce constau în
rotiri sau modificări de culoare.

Pentru a descrie metodele specifice operaţiilor se defineşte ca nod
bunic al nodului nou creat, nodul ce se găseşte pe al doilea nivel superior
faţă de nodul analizat, figura 14.24. Se defineşte ca nod unchi al nodului
analizat, al doilea nod fiu al nodului bunic.

23

15

2718

3

2

nod analizat

nod părinte

nod bunic

nod unchi

Figura 14.24 Relaţii între noduri Roşu & Negru

Pentru a determina poziţia acestor noduri particulare este utilizat
atributul RNNod *parinte al fiecărui obiect de tip RNNod. De exemplu nodul
bunic al nodului curent este determinat prin expresia NodCurent->parinte-
>parinte, iar nodul unchi este dat de NodCurent->parinte->parinte->st sau
NodCurent->parinte->parinte->st în funcţie de poziţia acestuia relativă la
nodul părinte al nodului curent.

Operaţia de inserare este analizată prin prisma cazurilor particulare.
Acestea sunt definite de contextul în care se găseşte nodul nou creat şi de
situaţiile de dezechilibru apărute.

Fiecare nod nou creat şi inserat în structura arborescentă de tip Roşu
şi Negru are culoarea iniţială roşie. Astfel se încearcă evitarea situaţie în
care este încălcată proprietatea că toate drumurile din arbore au acelaşi
număr de noduri negre.

Se consideră arborele Roşu & Negru vid în care se inserează valoarea
43. prin inserare se obţine structura arborescentă din figura 14.25 ce
trebuie reechilibrată prin modificarea culorii nodului rădăcină în negru.
Astfel nodul rădăcină este negru.

43

nod roşu

43

nod negru

reechilibrare prin modificare
culoare

Figura 14.25 Arbore Roşu & Negru cu un singur nod

În arborele analizat se inserează valorile 25 şi 78. Nodurile nou create
au culoare roşie, figura 14.26 şi nu este încălcată nici o proprietate a
arborilor.

78

43

25

Figura 14.26 Arbore Roşu & Negru echilibrat

Se ia în considerare situaţia în care se inserează nodul cu valoarea
14. Nodul nou creat este roşu, fapt care încalcă proprietăţile arborilor Roşu
& Negru, deoarece un nod roşu are întotdeauna un nod negru ca părinte.
Dacă nodul este recolorat în negru atunci toate drumurile din arbore nu vor
avea acelaşi număr de noduri negre. Situaţia este analizată prin prisma
nodului părinte şi a nodului unchi. Dacă aceste două noduri sunt roşii atunci
ele îşi schimbă culoarea în negru, iar nodul bunic, părintele celor două
noduri, devine negru, figura 14.27. Dacă prin modificarea culorii nodului
bunic, arborele este dezechilibrat atunci situaţia este remediată în manieră
recursivă până se ajunge la rădăcina arborelui.

78

43

25

14

78

43

25

14

78

43

25

14

dezechilibru

reechilibrare prin modificare
culoare dezechilibru

nod nou

nod părinte nod unch

nod bunic

i

Figura 14.27 Arbore Roşu & Negru reechilibrat

În cazul arborelui din figura 14.27, nodul rădăcină devine negru la
pasul următor, structura fiind reechilibrată.

Se consideră exemplul dat de inserarea valorii 17. Nodul nou are
culoare roşie, fapt ce încalcă proprietatea acestui tip de arbore, toate
nodurile fiu ale unui nod roşu sunt negre, figura 14.28.

17

78

43

25

14

dezechilibru

nod nou

nod părinte

nod bunic

 nod NULL

Figura 14.28 Arbore Roşu & Negru dezechilibrat

Reechilibrarea arborelui în această situaţie este realizată printr-o
dublă rotaţie. Într-o primă fază, se realizează o simplă rotaţie la stânga în
nodul părinte. Ipoteza de lucru este definită de faptul că:

- nodul părinte are culoare roşie, dar nodul unchi este fie negru, fie
nod NULL;

- nodul nou creat este fiu dreapta pentru nodul părinte, care la
rândul său este nod fiu stânga pentru nodul bunic.

Rotaţia este realizată asemenea arborilor AVL considerând pivot,
nodul părinte. După această prima rotaţie se obţine arborele din figura
14.29.

17

78

43

25

14

dezechilibru

nod nou

nod părinte

nod bunic

 nod NULL

14

78

43

25

17

dezechilibru

nod bunic

 nod NULL

nod părinte nou

Figura 14.29 Arbore Roşu & Negru dezechilibrat

Structura arborescentă este dezechilibrată prin prisma aceleiaşi
proprietăţi încălcate. Din acest motiv este necesară o a doua operaţie de
rotaţie ce are ca pivot, nodul bunic. De data aceasta, rotaţie se realizează la
dreapta, având sens opus cu direcţia nodului fiu faţă de nodul părinte.
Ipoteza de lucru este definită de condiţiile:

- nodul părinte are culoare roşie, dar nodul unchi este fie negru, fie
nod NULL;

- noul nod părinte este fiu stânga pentru nodul bunic şi nodul nou
inserat este fiu stânga pentru acesta.

Rotaţia descrisă în figura 14.30 este însoţită şi de o recolorare a
nodurilor, astfel încât nodul bunic devine roşu şi noul nod părinte devine
negru.

14

78

43

25

17

dezechilibru

nod bunic

 nod NULL

nod părinte nou

25

78

43

17

14

nod bunic vechi

nod NULL

Figura 14.30 Arbore Roşu & Negru reechilibrat

În cazul în care, se insera valoarea 10 atunci erau atinse condiţiile
implementării celei de a doua operaţie de rotaţie fiind evitată prima rotaţie
la stânga.

Dacă nodul nou are ca părinte un nod de culoare roşie şi acesta este
fiul din dreapta al nodului bunic, atunci situaţia reprezintă imaginea în
oglindă a cazului anterior.

De exemplu, se inserează valorile 89 şi 95 în această ordine. Figura
14.31 descrie păşii parcurşi pentru reechilibrarea arborelui.

25

89

43

17

1425

78

43

17

14

nod bunic

89

95

nod parinte

dezechilibru

78 95

nod nou

Figura 14.31 Reechilibrare arbore Roşu & Negru

Situaţia descrisă anterior este condiţionată de atingerea următoarelor
condiţii de lucru:

- nodul părinte are culoare roşie, dar nodul unchi este fie negru, fie
nod NULL;

- nodul părinte este fiu dreapta pentru nodul bunic şi nodul nou
inserat este fiu dreapta pentru acesta.

În cazul în care ultima condiţie nu este îndeplinită, noul nod fiind fiu
stânga, situaţia este ajustată prin operaţia de rotire la dreapta în nodul
părinte.

Operaţia de ştergere în arbori Roşu şi Negru completează procesul
întâlnit la arborii binari de căutare prin operaţii specifice de recolorare sau
rotire a nodurilor astfel încât să fie păstrate caracteristicile acestei structuri
arborescente.

În cazul în care nodul de şters are două noduri fiu atunci acesta este
înlocuit de nodul cu valoarea cea mai mare din subarborele stâng sau de
nodul cu valoarea cea mai mică din subarborele drept. Copierea de valoarea
este însoţită de păstrarea culorii nodului şters astfel încât să nu fie afectat
arborele. Oricare variantă se alege, nodul care va înlocui nodul de şters este
la rândul său eliminat din structura arborescentă. Acesta este fie nod
frunză, fie are maxim un fiu. De exemplu, se şterge nodul cu valoarea 43
din arborele descris în figura 14.32.

25

89

43

17

14 78 95

nod de şters

25

89

78

17

95 14

Înlocuire cu cel mai mic nod
din subarborele drept

Păstrare
culoare

Figura 14.32 Ştergere nod din arbore Roşu & Negru

Prin prisma exemplului anterior, problemele apărute la ştergerea
unui nod dintr-un arbore Roşu şi Negru sunt concentrate în cazurile
de ştergerea unui nod care are maxim un fiu.

Dacă nodul de şters este de culoare roşie, figura 14.30, atunci nodul
său fiu este de culoare neagră, aceasta fiind o caracteristică a arborilor Roşu
şi Negru. Ştergerea nodului implică în această situaţie înlocuirea sa cu nodul

fiu. Arborele este în continuare Roşu şi Negru deoarece ştergerea unui nod
roşu nu are implicaţii asupra numărului de noduri negre de pe fiecare drum.

15

89

43

17

14 78

nod de şters

Înlocuire cu unicul fiu al
nodului de şters

15

89

43

14

78

Figura 14.33 Cazul 1 de ştergere nod din arbore Roşu & Negru

Dacă nodul şters este de culoare neagră, iar fiul său este de culoare
roşie, figura 14.34, atunci arborele devine dezechilibrat pe drumul care
trece prin această zonă deoarece numărul de noduri negre este mai mic cu
unul. Reechilibrarea structurii arborescente se face în această situaţie prin
recolorarea în negru a nodului fiu. Astfel este refăcut numărul de noduri
negre.

15

79

43

17

14 54

nod de şters

Înlocuire cu unicul fiu al
nodului de şters

83

5948 80

79

43

14

15 54 83

59 48 80

recolorat in
negru

Figura 14.34 Cazul 2 de ştergere nod din arbore Roşu & Negru

Situaţiile complexe apărute la ştergerea unui nod dintr-un arbore de
tip Roşu şi Negru sunt apar în cazul în care nodul de şters şi fiul său sunt de
culoare neagră. Prin eliminarea nodului, arborele devine dezechilibrat
deoarece o parte din drumuri conţin cu un nod negru mai puţin. Spre
deosebire de cazurile prezentate anterior, nu mai este posibilă refacerea
numărului de noduri negre prin recolorarea fiului deoarece acesta are deja
culoarea neagră. Reechilibrarea arborelui este realizată printr-un număr fix
de operaţii de rotire sau recolorare.

Pentru a descrie aceste cazuri particulare de dezechilibru şi soluţiile
asociate, se fac o serie de notaţii care să ajute înţelegerea operaţiilor, figura
14.35. Se notează cu:

- P, nodul părinte al nodului de şters;
- F, nodul fiu al nodului de şters;
- B, nodul bunic al nodului de şters; acest nod este nodul părinte al

nodului P;
- U, nodul unchi al nodului de şters; acest nod este reprezentat de

al doilea fiu al nodului B;

- N1 nodul nepot al nodului de şters; este reprezentat de fiul din
stânga al nodului unchi;

- N2 nodul nepot al nodului de şters; este reprezentat de fiul din
dreapta al nodului unchi;

17

79

32

25

14 54
nod de şters

89

5845 81

nod părinte

nod bunic

nod unchi

nod fiu

P

B

U

F

N1 N2

nod nepot

Figura 14.35 Arbore Roşu & Negru

Următorul caz analizat este dat de figura 14.36 în care nodul cu valoarea
25 este şters. Situaţia este descrisă de ipotezele:

- nodul de şters este negru;
- unicul fiu al nodului de şters este negru;
- nodul unchi al nodului de şters este negru;
- nodul părinte este negru;
- nodurile nepoţi sunt negre.

79

32

25

14 54

nod de şters

89

58 45 81

P

B

U

F

17

N1 N2

10

79

32

14

54 89

58 45 81

P

B

U
F

10 17
N1 N2

dezechilibru

Figura 14.36 Cazul 3 de ştergere nod din arbore Roşu & Negru

Prin ştergerea nodului cu valoarea 25, arborele sau subarborele

analizat ce are rădăcină pe nodul cu valoarea 32 este dezechilibrat la
dreapta deoarece drumurile care pornesc din rădăcină şi continuă pe partea
stângă au cu un nod negru mai puţin. Reechilibrarea arborelui se realizează
prin modificarea culorii nodului unchi, valoarea 79, în roşu, figura 14.37.
Astfel, este redus cu unu numărul de noduri negre din drumurile ce pornesc
din rădăcina 32.

79

32

14

54 89

58 45 81

P

B

U
F

10 17
N1 N2

79

32

14

54 89

58 45 81

P

B

U
F

10 17
N1 N2

dezechilibru
modificare culoare nod unchi

Figura 14.37 Soluţie de reechilibrare caz 3 pentru arbore Roşu & Negru

În cazul în care, nodul cu valoarea 32 reprezintă rădăcina unui
subarbore, analiza se continuă în sus până când se atinge rădăcina arborelui
sau până când arborele este reechilibrat pe baza unei soluţii din cele
descrise.

Al patrulea caz de ştergere a unui nod dintr-un arbore Roşu şi Negru
ia în considerare situaţia descrisă în figura 14.38:

- nodul de şters este negru;
- unicul fiu al nodului de şters este negru;
- nodul unchi al nodului de şters este negru;
- nodul părinte este roşu;
- nodurile nepoţi sunt negre.

69

22

15

4 54

nod de şters

89

58 45 81

P

B

U

F

7

N1 N2

0

69

22

4

54 89

58 45 81

P

B

U
F

0 7
N1 N2

dezechilibru

Figura 14.38 Cazul 4 de ştergere nod din arbore Roşu & Negru

Asemenea cazului anterior, arborele îşi pierde calitatea de a fi Roşu şi

Negru în urma ştergerii deoarece nu toate drumurile de la rădăcină la
nodurile frunză au acelaşi număr de noduri negre. Reechilibrarea este
realizată prin interschimbarea culorilor nodului părinte şi nodului unchi,
figura 14.39.

69

22

4

54 89

58 45 81

P

B

U
F

0 7
N1 N2

69

22

4

54 89

58 45 81

P

B

U
F

0 7
N1 N2

dezechilibru

Figura 14.39 Soluţie de reechilibrare caz 4 pentru arbore Roşu & Negru

În situaţia în care arborele din figura 14.34 reprezintă un subarbore
atunci soluţia de reechilibrare prezentată are doar efecte locale, deoarece
lungimea măsurată în număr de noduri negre a tuturor drumurilor din acest
subarbore este mai mică cu unu faţă de situaţia iniţială. Din acest motiv,
reechilibrarea se continuă recursiv către rădăcina arborelui.

Cazul al cincilea de ştergere a unui nod ia în considerare ipotezele
descrise în figura 14.40:

- nodul de şters este negru;
- unicul fiu al nodului de şters este negru;
- nodul unchi al nodului de şters este roşu;
- nodul părinte este negru;
- nodurile nepoţi sunt negre.

79

32

25

14 54

nod de şters

89

58 45 81

P

B

U

F

17

N1 N2

10

79

32

14

54 89

58 45 81

P

B

U
F

10 17
N1 N2

dezechilibru

Figura 14.40 Cazul 5 de ştergere nod din arbore Roşu & Negru

Reechilibrarea arborelui pentru cazul 5 de dezechilibru se realizează

prin interschimbarea culorilor nodului unchi şi nodului părinte, urmată de o
rotaţie la stânga în nodul părinte, figura 14.41.

79

32

14 54

89

58 45

81

P

B

U

F

10 17

N1

N2 79

32

14

54 89

58 45 81

P

B

U
F

10 17
N1 N2

dezechilibru
(2)

(1)
interschimb culori (1) + rotire (2)

Figura 14.41 Soluţie de reechilibrare caz 5 pentru arbore Roşu & Negru

Analizând figura 14.41 se observă că soluţia cazului 5 nu conduce la
reechilibrarea totală a arborelui. Zona de dezechilibru este modificată astfel
încât să poată fi reechilibrată într-un număr finit de paşi. Această este
analizată prin prisma cazului patru care a fost descris sau prin intermediul
cazurilor şase şi şapte. De exemplu, arborele obţinut în figura 14.41 este
reechilibrat, în figura 14.42 prin intermediul soluţie oferite în cazul patru,
interschimbând culorile nodului cu valoare 32 şi nodului cu valoarea 54.

79

32

14

89

58 45

81

P

B

U

F

10 17

N1

N2
dezechilibru

79

32

14 54

89

5845

81

P

B

U

F

10

N1

N2

Interschimbare culori

17

54

Figura 14.42 Reechilibrare arbore Roşu & Negru din figura 14.41

Următoarele două cazuri analizează culoarea nodurilor nepoţi luând în
calcul situaţii derivate din cazul patru.

Cazul şase, descris în figura 14.43, este definit de următoarele
ipoteze:

- nodul de şters este negru;
- unicul fiu al nodului de şters este negru;
- nodul unchi al nodului de şters este negru;
- nodul părinte este roşu sau negru;
- nodul nepot N1 este roşu;
- nodul nepot N2 este negru.

69

22

15

4 54

nod de şters

89

58 45 81

P

B

U

F

7

N1 N2

0

69

22

4

54 89

58 45 81

P

B

U
F

0 7
N1 N2

dezechilibru

Figura 14.43 Cazul 6 de ştergere nod din arbore Roşu & Negru

Reechilibrarea arborelui din figura 14.43 este realizată prin:
- interschimbarea culorilor nodului părinte şi a nodului unchi;
- rotirea subarborelui cu rădăcină în nodul unchi la dreapta.

69

22

4 54

89 58

45

81

P

B

U

F

0 7

N1

N2

dezechilibru

69

22

4

54 89

58 45 81

P

B

U
F

0 7
N1

N2

dezechilibru

(1)

(2)

interschimb culori (1) + rotire (2)

Figura 14.44 Soluţie de reechilibrare caz 6 pentru arbore Roşu & Negru

Rezultatul obţinut în urma operaţiei de schimbare a culorii şi de rotire
nu conduce la reechilibrarea arborelui. Cu toate acestea, noua formă a
subarborelui permite reechilibrarea la pasul următor, deoarece situaţia
curentă descrie cazul şapte .

Cazul şase, descris în figura 14.45, este definit de următoarele
ipoteze:

- nodul de şters este negru;
- unicul fiu al nodului de şters este negru;
- nodul unchi al nodului de şters este negru;
- nodul părinte este roşu sau negru;
- nodul nepot N1 este roşu sau negru;
- nodul nepot N2 este roşu.

69

22

15

4 54

nod de şters

89

58 45 81

P

B

U

F

7

N1 N2

0

69

22

4

54 89

58 45 81

P

B

U
F

0 7
N1 N2

dezechilibru

Figura 14.45 Cazul 7 de ştergere nod din arbore Roşu & Negru

Reechilibrarea situaţie descrise în figura 14.46 se realizează prin:
- interschimbare culoare nod părinte cu nodul unchi;
- rotire la stânga a arborelui în nodul părinte;
- modificare culoare nepot N2 în negru.

22

69

4 54

89

58 45

81

P

B

U

F

0 7

N1

N2
69

22

4

54 89

58 45 81

P

B

U
F

0 7
N1 N2

dezechilibru

(2)

(1)

(3)

interschimb culori (1) + rotire (2)+
schimbare culoare(3)

Figura 14.46 Soluţie de reechilibrare caz 7 pentru arbore Roşu & Negru

Figura 14.46 prezintă rezultatul obţinut în urma reechilibrării. Se
observă eliminarea dezechilibrului din acest arbore sau subarbore.

Pentru exemplele analizate în acest capitol s-a considerat că nodul de
şters se găseşte în partea stângă a nodului părinte. Pentru situaţia opusă,
soluţiile descrise au aceleaşi efect dacă suferă mici modificări prin prisma
noului reper de vizualizare a arborelui.

De asemenea, în exemplele prezentate reechilibrarea arborelui are un
caracter local pentru a descrie tehnicile de reechilibrare, însă realizare unei
aplicaţii trebuie să implementeze secvenţe care să parcurgă arborele de jos
în sus, de la poziţia nodului de şters către rădăcina arborelui şi care să
reechilibreze toată structura.

