
 
 

14. ARBORI ECHILIBRAŢI 
 
 

14.1 Echilibrarea structurilor arborescente 
 

Pentru a descrie gradul de echilibru al structurilor arborescente sunt 
definite două abordări: 

- arbori perfecţi echilibraţi în care pentru fiecare nod, diferenţa dintre 
numărul de noduri ale subarborelui drept şi stâng ia valori în 
mulţimea {-1 ; 0 ; +1}; într-un arbore perfect echilibrat de înălţime 
h, toate nodurile frunză sunt pe acelaşi nivel şi orice nod de pe 
nivelurile intermediare 1..h-2 are numărul maxim de fii; de exemplu, 
figura 14.1 descrie un arbore binar de căutare perfect echilibrat; 
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Figura 14.1 Arbore binar perfect echilibrat 
  

cea mai simplă metoda de a obţine un astfel de arbore se bazează pe 
parcurgerea prin metoda divide et impera a şirului de chei ordonate 
crescător şi inserarea valorii din mijloc în arbore; aceasta metoda 
este ineficienta în practică deoarece presupune realizarea unui volum 
mare de calcule după fiecare operaţie de inserare sau ştergere ; 
efortul ridicat de prelucrare este dat de parcurgerea în inordine a 
arborelui pentru a obţine şirul sortat crescător al cheilor si de 
reconstrucţia structurii ; considerând un arbore binar de căutare,  
metoda utilizata în acest sens, echilibrareArb,  are ca parametrii şirul 
sortat crescător al valorilor, vectorul chei, dimensiunea acestuia, dim, 
limitele intervalului curent, stanga, respectiv, dreapta, şi rădăcina 
arborelui ce va fi creat; menţinerea unei astfel de structuri reprezintă 
o operaţie cu grad de complexitate foarte ridicat, fapt care conduce la 
recrearea arborelui perfect echilibrat după fiecare operaţie de 
inserare sau ştergere cu metoda echilibrareArb; 

 
void echlibrareArbore(int *chei, int dim, int stanga, int dreapta, 
NodArbore *&radacina){  
 if (dreapta>=stanga){ 
  int mijloc=(dreapta+stanga)/2; 
  if (dreapta-stanga==1){ 
   radacina =inserareArbore(radacina, chei[stanga]); 
   radacina = inserareArbore (radacina, chei[dreapta]); 
  } 



 else{ 
  if (dreapta==stanga) 
   radacina = inserareArbore (radacina, chei[stanga]); 
  else{ 
  radacina = inserareArbore (radacina, chei[mijloc]); 
  echlibrareArbore (chei,dim,stanga, mijloc -1, radacina); 
  echlibrareArbore (chei,dim, mijloc +1,dreapta, radacina); 
   } 
  } 
 } 
} 
 

- imperfect echilibrat în care pentru fiecare nod, diferenţa dintre 
înălţimea subarborelui drept şi înălţimea subarborelui stâng ia valori 
în mulţimea {-1 ; 0 ; +1}; crearea unei astfel de structuri se bazează 
pe utilizarea metodei prezentate anterior pornind de la un set de 
valori sortate crescător sau descrescător; menţinerea gradului de 
echilibru al structurii după operaţiile de inserare sau ştergere este 
posibilă prin metode cu un grad de complexitate acceptabil şi care 
sunt specifice unor structuri arborescente echilibrate particulare, AVL, 
arbori B, arbori Rosu & Negru; aceste metode implică un efort de 
prelucrare mai mic decât volumul operaţiilor asociat reconstrucţiei 
arborelui prin metoda echilibrareArb. 

 
Structurile arborescente sunt structuri de date dinamice în care 

elementele sunt poziţionate ierarhic în funcţie de legătura părinte – copil ce 
există între două elemente. Din punct de vedere al minimizării efortului de 
regăsire, această organizare este mai eficientă în raport cu structurile 
dinamice liniare, deoarece reduce numărul de comparări necesar identificării 
unui element. În cazul unei structuri de date liniare, cel mai nefavorabil caz 
descrie o complexitate egală cu O(m), unde m reprezintă numărul de 
elemente, şi este generat de căutarea ultimului element. Această situaţie 
este întâlnită şi în cazul  structurilor arborescente ineficient construite, în 
care fiecare nod are maxim un fiu şi care au asociată imaginea unei liste.  
Pentru a evita acest lucru şi pentru de a beneficia de efectele pozitive ale 
utilizării structurilor arborescente  în operaţiile de căutare se definesc reguli 
stricte de realizare ale unei astfel de structuri. Prin prisma acestor reguli, 
structurile arborescente se diferenţiază pe mai multe tipuri. Dintre acestea, 
structurile arborescente echilibrate ocupă o pondere  ridicată în dezvoltarea 
de soluţii eficiente deoarece descriu un nivel constant de efort apropiat de 
cel optim.  

Se consideră şirul valorilor 23, 10, 27, 18, 3, 2 pe baza cărora se 
defineşte un arbore binar de căutare. Structura arborescenta obţinută este 
descrisă în figura 14.2. 
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Figura 14.2 Arbore binar de căutare 

 
Din analiza modului in care sunt poziţionate valorile, situaţia cea mai 

puţin favorabilă ce caracterizează acest arbore binar  de căutare este data 
de cazul în care nodul ce conţine cheia cu valoarea 2 are o frecvenţă ridicată 
de utilizare. Situaţia este generată de faptul ca cel mai lung drum de la 
nodul rădăcină la un nod frunza este dat de drumul 23 – 10 – 3 – 2, de 
lungime 4. Dimensiunea este determinată de numărul de comparări 
necesare identificării nodului căutat. 

Pe baza unei aranjări echilibrate a valorilor, acelaşi set de valori este 
reprezentat de structura arborescenta următoare 
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Figura 14.3 Arbore binar de căutare echilibrat 
 

Prin prisma cazului cel mai puţin favorabil, arborele din figura 14.3 
este mai eficient decât cel anterior deoarece numărul maxim de comparări 
necesare identificării oricărui nod din structura este egal cu 3. 

În funcţie de numărul de elemente dintr-un arbore binar de căutare, 
n,  o structură echilibrată descrie o complexitate egală cu O(log2n) pentru 
cel mai nefavorabil caz. În schimb, o structură arborescentă de acelaşi tip, 
dar care nu este echilibrată, este caracterizată pentru cel mai nefavorabil 
caz de o complexitate egală cu O(n). 

Minimizarea efortului de regăsire a informaţiilor se obţine printr-o 
aranjare echilibrata a valorilor pe ambii subarbori ai fiecărui nod.  
 
 
 
 
 



14.2 Caracteristici ale arborilor AVL 
 

Un arbore AVL, definit prima dată de G.M. Adelson-Velskii şi E.M. 
Landis în [Ande62], este un arbore binar de căutare echilibrat pe înălţime.  
Un arbore binar de căutare este AVL dacă gradul de echilibru al fiecărui nod 
ia valori în mulţimea {-1,0,1}. 

Pentru a măsura gradul de echilibru al unui nod se defineşte 
indicatorul GE ce descrie relaţia: 
 

GE = H(SD) – H(SS)  (14.1) 
 

unde H() reprezintă funcţia de calcul a înălţimii unei structuri 
arborescente.  Pentru a determina înălţimea unui arbore, al cărui nod 
rădăcină este rad, se utilizează formula: 

 
H(rad) = 1 + max (H(subarbore drept), H(subarbore stâng))       (14.2) 

 
în care funcţia max() este utilizată pentru a determina maximul dintre două 
valori.  
 
int max(int valoare_1, valoare_2) 
{ 

return valoare_1 < valoare_2 ? valoare_2 : valoare_1; 
} 

 
Pentru valoarea indicatorului GE = 0, nodul este echilibrat, iar pentru 

valorile 1 si -1, nodul descrie un dezechilibru la dreapta, respectiv la stânga.  
Figura 14.4, descrie arborele binar de căutare pentru care s-a determinat 
gradul de echilibru. 

Situaţiile în care GE are valoarea -1 sau 1 sunt acceptate deoarece, 
pentru un număr par de valori este imposibil sa se definească un arbore 
binar de căutare în care toate nodurile sunt perfect echilibrate. 
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Figura 14.4 Arbore binar de căutare echilibrat 
 

Arborele AVL, reprezintă un arbore binar de căutare echilibrat. 
Pornind de la această ipoteza, acest tip de arbore moşteneşte toate 
operaţiile implementate de arborii binari de căutare. Caracteristica de 
echilibru se gestionează prin verificarea atentă a gradului de echilibru, 
pentru fiecare nod în parte, în urma operaţiilor de inserare şi ştergere. 



Aceste tipuri de prelucrări afectează structura arborelui şi conduc la situaţii 
de dezechilibru. 

Pentru a menţine arborele AVL, după fiecare operaţie de inserare, 
respectiv ştergere, sunt căutate situaţiile de dezechilibru puternic, 
identificate prin intermediul nodurilor pentru care indicatorul GE ia valori în 
mulţimea {-2,2}. 

Reechilibrarea arborelui binar de căutare şi păstrarea caracteristicilor 
aferente arborilor AVL se realizează prin operaţii de rotire: 

- rotire simpla la stânga; 
- rotire simpla la dreapta; 
- dubla rotire la stânga ; 
- dubla rotire la dreapta. 
Este important de reţinut că printr-o singură rotaţie, selectată în 

funcţie de situaţie, un arbore AVL dezechilibrat în urma operaţiei de inserare 
va fi reechilibrat. În schimb, operaţie de reechilibrare în urma ştergerii unui 
nod este mult mai complexă, necesitând minim o rotaţie. 
 
 

14.3 Operaţii pe arbori AVL 
 

Determinarea metodei adecvate de reechilibrare se realizează prin 
analiza gradului de echilibru a nodurilor aflate pe drumul de la rădăcina 
arborelui la locaţia în care a fost inserat, respectiv şters, nodul. 

Se considera situaţia din figura 14.4 în care se inserează nodul cu 
cheia 1. Arborele binar obţinut este: 
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Figura 14.5 Arbore binar AVL dezechilibrat 
 

În urma procesului de inserarea se recalculeaza gradul de echilibru al 
nodurilor ce sunt afectate. Aecstea noduri se gasesc in multimea nodurilor 
{10, 3, 2, 1}. Se observa ca arborele îşi pierde caracteristica de a fi AVL 
deoarece nodul cu cheia 3 are un grad de echilibru egal cu -2, ceea ce 
evidenţiază un dezechilibru puternic la stânga. 

Pentru a aplica procesul de echilibrare, bazat pe operaţie de rotire, se 
identifica un nod, numit pivot, în care se realizează rotirea subarborelui. 



Selectarea nodului pivot se face printr-o abordare jos-sus pornind de 
la locaţia nodului inserat, respectiv, şters către rădăcina arborelui. 
 Reechilibrarea arborelui se face cat mai aproape de locaţia care a 
generat dezechilibrul. Astfel, printr-un număr minim de rotaţii se 
reconstruieşte caracteristica arborelui AVL. 

În figura, 14.5, nodul pivot este nodul a cărui cheie are valoarea 3. 
Pentru a reechilibra arborele este nevoie să transferăm o parte din 
greutatea subarborelui stâng către subarborele drept al nodului pivot. 

Pentru a identifica operaţia de rotaţie corespunzătoare se analizează 
gradul de echilibru al nodului pivot si cel al nodului fiu de pe direcţia 
dezechilibrului. Analizând arborele din figura 14.4, se observa ca nodul 
pivot, cu cheia 3, are gradul de echilibru GE = -2, ceea ce implică un 
dezechilibru la stânga. Deoarece nodul fiu stânga, cu cheia 2, are 
dezechilibru simplu tot la stânga, reechilibrarea se realizează prin operaţia 
de rotire simplă la dreapta, figura 14.6. 
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Figura 14.6 Procesul de rotire simplă la dreapta 
 

Procesul de rotire simplă la dreapta implică existenţa a două 
elemente principale, nodul pivot, ce este dezechilibrat puternic la stânga şi 
fiul acestuia de pe direcţia dezechilibrului, care este la rândul său 
dezechilibrat slab tot la stânga. Pentru a reechilibra arborele în această 
situaţie este necesar şi suficient să scădem cu o unitate înălţimea 
subarborelui stâng al pivotului şi să creştem cu o unitate înălţimea 
subarborelui drept. Pentru a atinge acest obiectiv, se modifică cele două 
legături evidenţiate în figura 14.5.  Se observă că subarborele Y devine 
subarbore drept pentru nodul pivot, fapt ce nu contrazice existenţa unui 
arbore binar de căutare deoarece toate valorile din acest subarbore sunt 
mai mici decât valoarea nodului pivot.  

Prin aplicarea procesului de rotire, arborele se reechilibrează şi îşi 
păstrează caracteristicile specifice unui arbore AVL şi unui arbore binar de 
căutare. Se observă că prin rotaţia simplă la dreapta sunt afectate doar 
gradele de echilibru ale nodului pivot şi nodului fiu de pe direcţia 
dezechilibrului, nodul fiu stânga. Prin modificarea structurii arborescente, 
cele două noduri devin perfect echilibrate, GE = 0. Explicaţia este dată de 
faptul că nodul fiu stânga urcă pe nivelul superior în locul nodului părinte, 
iar acesta, fiind nod pivot, coboară în subarborele drept. Figura 14.7 



utilizează ca reper înălţimea subarborelui Y pentru a descrie modul în care 
se ajunge la acest rezultat. Este evidenţiat modul de calcul al indicatorului 
GE pentru a sublinia modul în care se ajunge la rezultat. 
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Figura 14.7 Procesul de rotire simplă la dreapta 

 
Metoda clasei AVLArbore ce implementează această rotaţie simplă 

primeşte ca parametru referinţa la nodul pivot. 
 
void AVLArbore::RotatieSimplaDreapta(AVLNod * &pivot) 
{ 
 AVLNod *FiuStanga = pivot->st; 
 pivot->st = FiuStanga->dr; 
 FiuStanga->dr = pivot; 
 
 pivot->Echilibru = 0; 
 FiuStanga->Echilibru = 0; 
 
 pivot = FiuStanga; 
} 

 
Aplicând această metodă arborelui analizat, rezultă structura 

arborescentă din figura 14.8.  
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Figura 14.8 Arbore AVL reechilibrat 
 

Dacă prin inserarea sau ştergerea unui nod se ajunge în situaţia din 
figura 14.9, reechilibrarea arborelui se realizează printr-o rotire simplă la 
stânga. 
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Figura 14.9 Arbore AVL dezechilibrat 
 

În această situaţie, pivotul este dat de nodul cu valoarea 23, acesta 
fiind puternic dezechilibrat la dreapta, GE  = 2. Deoarece nodul fiu dreapta, 
este dezechilibrat slab pe aceeaşi direcţie, reechilibrarea se realizează prin 
operaţia de rotire simplă la stânga. 
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Figura 14.10 Procesul de rotire simplă la stânga 
 

Asemănător operaţiei de rotaţie simplă la dreaptă, cele două noduri 
afectate direct de reorganizarea legăturilor, nodul pivot şi fiul acestuia din 
dreapta, au în final grade de echilibru egale cu valoarea zero. Reorganizarea 
celor două legături evidenţiate în figura 14.10 are ca efect reducerea cu o 
unitate a înălţimii subarborelui drept al nodului pivot şi creşterea cu o 
unitate a subarborelui stâng. 

Metoda ce implementează această operaţie, RotatieSimplaStanga, are 
ca parametru de intrare referinţa nodului pivot. 
 
void AVLArbore::RotatieSimplaStanga(AVLNod * &pivot) 
{ 
 AVLNod *FiuDreapta = pivot->dr; 
 pivot->dr = FiuDreapta->st; 
 FiuDreapta->st = pivot; 
 



 pivot->Echilibru = 0; 
 FiuDreapta->Echilibru = 0; 
 
 pivot = FiuDreapta; 
} 
  

Aplicând această operaţie arborelui din figura 14.10 se obţine 
arborele AVL: 
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Figura 14.11 Arbore AVL reechilibrat 
 

În cazul operaţiile de rotire duble, situaţia iniţială este caracterizată 
de sensuri opuse de dezechilibru pentru nodul pivot si pentru nodul său fiu 
de pe direcţia dezechilibrului. Pentru a exemplifica o astfel de situaţie se 
inserează în arborele AVL din figura 14.11, elementele cu valorile 16, 24, 
26. Structura arborescentă obţinută este: 
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Figura 14.12 Arbore AVL dezechilibrat 
 

Structura arborescentă din figura 14.12 nu este arbore AVL deoarece 
există noduri pentru care gradul de echilibru, GE, are valori în mulţimea     
{-2, +2}. Situaţia este generată de inserarea nodului cu valoarea 26, iar 
analiza drumului de la acest nod înapoi către nodul rădăcină conduce la 



identificarea pivotului, nodul cu valoarea 27. Se observă că, acest nod este 
puternic dezechilibrat la stânga, iar nodul fiu de pe această direcţie, nodul 
23, este dezechilibrat slab pe direcţia opusă. Soluţia pentru această 
problemă necesită o abordare diferită de cele două tipuri de rotiri simple 
descrise, deoarece acestea nu conduc la reechilibrarea arborelui. Pentru a 
exemplifica această abordare greşită se simulează o rotire simplă la dreapta 
aplicată pivotului. Rezultatul obţinut este: 
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Figura 14.13 Arbore AVL dezechilibrat 
 

Se observă că arborele, figura 14.13, este în continuare dezechilibrat, 
numai că de data aceasta, dezechilibrul este în sens opus. Încercarea 
reechilibrării, tot cu o rotire simplă, dar în sens opus, va conduce la 
obţinerea ipotezei iniţiale, descrisă în figura 14.12. 

Soluţia eficientă a acestui tip de dezechilibru este dată de aplicarea 
unei rotiri duble, ce constă în aplicarea a două rotiri simple. Scopul primei 
rotiri este de a rearanja structura arborescentă astfel încât direcţiile 
dezechilibrului nodului pivot şi a fiului acestuia să aibă acelaşi sens. Cea de-
a doua rotire are ca obiectiv reechilibrarea arborelui. Pe baza acestor 
motive, cele două rotaţii sunt aplicate unor noduri diferite. Prima rotaţie se 
aplică nodului fiu al nodului pivot, nod ce se găseşte pe direcţia 
dezechilibrului. Sensul acestei prime rotiri este identic cu direcţia 
dezechilibrului. A două rotire simplă se aplică nodului pivot şi are sens opus 
dezechilibrului. 

Pentru structura arborescentă din figura 14.12, pivotul este dat de 
nodul cu valoarea 27 şi acesta este puternic dezechilibrat la stânga. Pentru 
a reechilibra arborele se parcurg următoarele etape: 

- se analizează nodul fiu al nodului pivot pe direcţia dezechilibrului; 
acest nod are valoarea 23 şi este slab dezechilibrat la dreapta; 

- deoarece pivotul şi nodul fiu sunt dezechilibrate pe direcţii 
diferite, reechilibrarea se realizează printr-o dublă rotaţie; 

- prima rotaţie se aplică nodului fiu şi are sens identic cu 
dezechilibrul nodului pivot; se observă că această operaţie 
intermediară, figura 14.12.a, redefineşte situaţia aducând-o într-o 
formă specifică cazurilor în care se aplică rotaţii simple; 



- a doua rotaţie se aplică nodului pivot şi are sens opus 
dezechilibrului. 
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Figura 14.14 Rotaţia dublă la dreapta 
 

Din analiza dublei rotaţii la dreapta sunt evidenţiate 3 elemente 
importante, în funcţie de care sunt reiniţializate o serie de  legături: 

- nodul pivot, puternic dezechilibrat la stânga, GE = -2; 
- fiul stânga la pivotului, FiuStanga ,ce este slab dezechilibrat la 

dreapta, GE = 1; 
- fiul dreapta al nodului FiuStanga, notat cu FiuStanga_FiuDreapta; 

în funcţie de situaţie, acest nod prezintă un grad de echilibru ce ia 
valori în mulţimea {-1, 0 , 1}. 

Pentru a determina gradul de echilibru final al nodurilor afectate de 
dubla rotaţie, se analizează modul în care se distribuie înălţimea 
subarborilor în urma rotaţiilor. Tabelul 14.1 descrie situaţiile iniţiale şi 
rezultatele la care se ajunge în urma reechilibrării. 
 

Tabelul nr. 14.1 Rezultatul operaţiei de dublă rotaţie la dreapta 
 

Situaţie iniţială Situaţie finală 
Pivot FiuStanga FiuStanga_FiuDreapta Pivot FiuStanga FiuStanga_FiuDreapta 

-2 +1 -1 1 0 0 
-2 +1 0 0 0 0 
-2 +1 +1 0 -1 0 

  
Situaţia descrisă în tabelul anterior este utilizată pentru a defini mai eficient 
metoda care implementează acest tip de rotaţie. Astfel este evitat efortul 
suplimentar de a recalcula gradul de echilibru pentru cele trei noduri 
afectate. 



Clasa AVLArbore implementează această operaţie prin intermediul 
metodei RotatieDublaDreapta ce primeşte ca parametrul referinţa nodului 
pivot. 
 
void AVLArbore::RotatieDublaDreapta(AVLNod * &pivot) 
{ 
 AVLNod *FiuStanga, *FiuStanga_FiuDreapta; 
 FiuStanga = pivot->st; 
 FiuStanga_FiuDreapta = FiuStanga->dr; 
 
  //realizare rotatie 1 - simpla stanga 
 FiuStanga->dr = FiuStanga_FiuDreapta->st; 
 FiuStanga_FiuDreapta->st = FiuStanga; 
  //realizare rotatie 2 - simpla dreapta 
 pivot->st = FiuStanga_FiuDreapta->dr; 
 FiuStanga_FiuDreapta->dr = pivot; 
 
  //modificare grade de echilibru 
 if(FiuStanga_FiuDreapta->Echilibru == 1) 
 { 
  pivot->Echilibru = 0; 
  FiuStanga->Echilibru = -1; 
 } 
 else 
  if(FiuStanga_FiuDreapta->Echilibru == 0) 
  { 
   pivot->Echilibru = 0; 
   FiuStanga->Echilibru = 0; 
  } 
  else 
  { 
   pivot->Echilibru = 1; 
   FiuStanga->Echilibru = 0; 
  } 
   
  FiuStanga_FiuDreapta->Echilibru=0; 
 
 pivot = FiuStanga_FiuDreapta; 
} 
 

Structura arborescentă este modificată prin ştergerea nodului cu 
valoarea 16 şi prin adăugarea unei noi valori, 25. Arborele obţinut, descris 
în figura 14.15, încetează să mai fie AVL în urma aplicării ultimei modificări. 
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Figura 14.15 Arbore AVL dezechilibrat 



 
Se observă că există două noduri, cu valoarea 24 şi 10, ce descriu 

dezechilibre puternice, GE = 2, la dreapta. Analizând, de jos în sus, drumul 
de la noul nod inserat la rădăcină arborelui, se stabileşte ca fiind pivot nodul 
cu valoarea 24. În mod asemănător cu situaţia descrisă anterior,  fiul 
pivotului de pe direcţia dezechilibrului este dezechilibrat uşor în sens opus. 
Tentativa de a rezolva situaţia prin intermediul unei rotaţii simple nu 
conduce la soluţionarea problemei reechilibrării deoarece are ca rezultat 
mutarea dezechilibrului pe partea stângă.  

Având în vedere condiţiile de lucru, reechilibrarea arborelui din figura 
14.15 presupune: 

- aplicarea unei rotaţii simple la dreapta în nodul fiu al pivotului; 
dacă pivotul are ambii fii atunci rotaţia se face în toate situaţiile 
asupra nodului fiu de pe direcţia dezechilibrului; deoarece pivotul 
este  dezechilibrat puternic la dreapta, nodul fiu selecta este 27; 

- aplicarea unei rotaţii simple la stânga, în sens opus 
dezechilibrului, în nodul pivot. 
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Figura 14.16 Rotaţia dublă la stânga 

 
Pentru a implementa o soluţie software care să gestioneze datele prin 

intermediul unui arbore binar de căutare echilibrat de tip AVL, trebuie să fie 
dezvoltate rutine complementare operaţiilor de inserare şi ştergere în arbori 
binari de căutare care să reechilibreze structura arborescentă aflată în una 
din cele patru situaţii descrise. 

Tabelul 14.2 sintetizează situaţiile de dezechilibru şi modul în care 
arborele AVL este menţinut în urma operaţiilor de inserare. 
 
 



Tabelul nr. 14.2 Situaţii dezechilibru arbori AVL 
 

Grad 
echilibru nod 

pivot 

Nod fiu 
analizat 

Grad 
echilibru 
nod fiu 

Rotire 
 

 
+2 dreapta +1 Simplă la stânga 
+2 dreapta -1 Dublă la stânga: rotire simplă la 

dreapta în fiul din dreapta al pivotului; 
rotire simplă la stânga în pivot. 

-2 stânga -1 Simplă la dreapta 
-2 stânga +1 Dublă la dreapta: rotire simplă la 

stânga în fiul din stânga al pivotului; 
rotire simplă la dreapta în pivot. 

 
Dezvoltarea de aplicaţii care implementează lucrul cu arbori de tip 

AVL se bazează pe dezvoltarea unei biblioteci de cod în care sunt definite 
clasele AVLNod şi AVLArbore. Clasa AVLNod descrie atributele şi metodele 
unui obiect ce reprezintă nodul unui arbore binar de căutare echilibrat. 
 
class AVLNod 
{ 
private: 
 int Echilibru; 
 int Info; 
 AVLNod *st; 
 AVLNod *dr; 
 
public: 
 //constructorii clasei 
 AVLNod(void); 
 AVLNod(int echilibru, int info, AVLNod * stanga, AVLNod * 
dreapta); 

//destructorul clasei 
 virtual ~AVLNod(void); 
 
 //interfata pentru atributul Echilibru 
 int GetEchilibru(void){return this->Echilibru;}; 
 

// acces la atributele private din clasa AVLArbore 
 friend class AVLArbore; 
 //acces la atributele private din clasa AVLNodeStack 

friend class AVLNodeStack; 
}; 

 
În comparaţie cu nodul unui arbore binar de căutare, această clasă 

defineşte o proprietate nouă, Echilibru, utilizată pentru a gestiona gradul de 
echilibru asociat fiecărui nod. Atributele Info, st şi dr sunt utilizate pentru a 
memora valoarea nodului curent şi pentru a face legătură între nodul 
părinte şi nodul fiu stânga, respectiv, dreapta. 
Cele două metode constructor 
 
AVLNod::AVLNod(void) 
{ 
 Echilibru = 0; 
 Info = 0; 
 st = NULL; 
 dr = NULL; 



} 
AVLNod::AVLNod(int echilibru, int info, AVLNod * stanga, AVLNod * 
dreapta) 
{ 
 Echilibru = echilibru; 
 Info = info; 
 st = stanga; 
 dr = dreapta; 
} 

 
permit programatorilor crearea şi iniţializarea unui nod al arborelui cu valori 
implicite sau pe baza unor parametrii de intrare. 

Clasa AVLArbore defineşte atributele şi metodele unui obiect de tip 
arbore AVL. Acesta gestionează structura dinamică de elemente prin 
intermediul referinţei către nodul rădăcină, radacina.  
 
class AVLArbore 
{ 
public: 
 AVLNod *radacina; 
public: 
 
 //constructorul clasei 
 AVLArbore(void); 
 //constructorul de copiere al clasei 
 AVLArbore(const AVLArbore & arbore); 
 //destructorul clasei 
 virtual ~AVLArbore(void); 
 //operatorul = 
 AVLArbore operator = (AVLArbore & arbore); 
 
 //metodele clasei pentru inserare/stergere nod 
 void Insert(const int info); 
 void Delete(const int info); 
 
 //metoda pentru afisarea arborelui 
 static void AfisareArbore(AVLNod * rad); 
 
 //metoda pentru stergerea arborelui 
 void StergereArbore(AVLNod * &rad); 
 
private: 
 void AVLInsert(AVLNod* &arbore,AVLNod * nodNou, int & 
echilibruNou); 
 void AVLDelete(AVLNod* &arbore,const int Info,AVLNodeStack 
&stiva); 
 
 //rotatii simple utilizate la inserare 
 void RotatieSimplaDreapta(AVLNod * &pivot); 
 void RotatieSimplaStanga(AVLNod * &pivot); 
 
 //rotatii simple utilizate la stergere 
 void RotatieSimplaDreaptaStergere(AVLNod * &pivot); 
 void RotatieSimplaStangaStergere(AVLNod * &pivot); 
 
 void RotatieDublaDreapta(AVLNod * &pivot); 
 void RotatieDublaStanga(AVLNod * &pivot); 
 
 //metodele clasei pentru reechilibrarea arborelui 



 void ReechilibrareSubarboreStang(AVLNod * &pivot, int 
&echilibruNou); 
 void ReechilibrareSubarboreDrept(AVLNod * &pivot, int 
&echilibruNou); 
 
 //metoda utilizata pentru copierea arborelui 
 void CopiereArbore(AVLArbore &arboreNou, AVLNod * rad); 
 

//metoda inserare a unui arbore binar de cautare 
 AVLNod * Inserare(AVLNod *rad, const int Valoare, int echilibru 
= 0); 
 static int Stergere(AVLNod*& Subarbore, AVLNodeStack &stiva); 
  
 //metoda pentru determinarea inaltimii unui arbore 
 int inaltime(AVLNod * radacina); 
  

//metoda ce determina maximul dintre doua valori 
 int max(int a, int b){return a < b? b : a;} 
  

//metoda ce determina gradul de echilibru al nodului 
 int CalculeazaEchilibru(AVLNod *& radacina); 
  

//metoda recalculeaza gradul de echilibru pentru toate nodurile 
 void RecalculeazaEchilibrul(AVLNod *&rad); 
}; 

 
O atenţie deosebită se acordă formei dată de programator a 

constructorului de copiere şi a operatorului =. Necesitatea este dată de 
existenţa atributului dinamic AVLNod *radacina şi de efectele negative pe 
care le au formele implicite ale acestor două metode asupra programului. 
Programatorul trebuie să se asigure că în situaţiile în care aceste două 
metode sunt apelate se vor crea structuri noi cu valori egale şi nu se vor 
face doar simple iniţializări de referinţe către aceeaşi zonă de memorie. 

Copierea arborelui presupune parcurgerea structurii existente, cu 
păstrarea caracteristicilor acesteia. Din acest motiv, cele două metode se 
bazează pe o parcurgere în preordine a arborelui existent, completată de 
inserarea nodului curent în structura nou creată. Spre deosebire de 
parcurgere în inordine şi postordine, parcurgere în preordine asigură 
crearea unui nou arbore binar de căutare identic cu structura sursă şi cu 
minim de efort. 

Se consideră structura arborescentă din figura 14.17 pentru care se 
obţin şirurile valorilor elementelor, parcurgând arborele prin cele trei 
metode cunoscute.  
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Figura 14.17 Structură arborescenta de tip AVL 



 
Prin inserarea valorilor într-o nouă structură arborescentă, pe măsură 

ce acestea sunt accesate şi analizate, se obţin cei trei arbori binari de 
căutare din figura 14.18. 
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Figura 14.18 Structuri arborescente binare 
 

Se observă că, dintre cele trei metode de parcurgere a unui arbore 
binar, cea mai potrivită pentru operaţia de copiere este abordarea în 
preordine. Celelalte două metode necesită un efort suplimentar de 
rearanjare a nodurilor şi nu asigură obţinerea unei arbore identic cu sursa. 
Din punct de vedere al reechilibrării, efortul este mult mai mare datorită 
prelucrărilor suplimentare.  

Metoda CopiereArbore construieşte copia arborelui radArboreVechi 
parcurgând-ul în preordine. 
 
void AVLArbore::CopiereArbore(AVLArbore &arboreNou, AVLNod 
*radArboreVechi) 
{ 
 if(radArboreVechi!=NULL) 
 { 
  arboreNou.radacina = 
arboreNou.Inserare(arboreNou.radacina,radArboreVechi->Info, 
radArboreVechi->Echilibru); 
  CopiereArbore( arboreNou, radArboreVechi->st); 
  CopiereArbore( arboreNou, radArboreVechi->dr); 
 } 
} 
 

Metoda anterioră, se bazează pe parcurgerea recursivă a arborelui 
curent şi apelează rutina Inserare specifică arborilor binari de văutare 
pentru a insera o valoare într-o nouă structură arborescentă gestionată prin 
pointerul arboreNou. 
 
AVLNod * AVLArbore::Inserare(AVLNod *rad, const int Valoare, int 
echilibru) 
{ 
 if(rad == NULL) 
 { 
  rad = new AVLNod(echilibru,Valoare, NULL, NULL); 
 } 
 else 
  if(rad->Info<Valoare) 
   rad->dr = Inserare(rad->dr,Valoare,echilibru); 



  else 
   if(rad->Info>Valoare) 
    rad->st = Inserare(rad->st,Valoare,echilibru); 
 return rad; 
} 
 

Formele explicite ale constructorului de copiere şi a operatorului de 
egal implementează rutina de copiere a unui arbore pentru a genera noi 
structuri arborescente cu valori identice. 
 
AVLArbore::AVLArbore(const AVLArbore &arbore) 
{ 
 this->radacina = NULL; 
 CopiereArbore((*this),arbore.radacina); 
} 
 

Spre deosebire de constructorul de copiere, operatorul = presupune 
ştergerea arborelui existent şi recrearea acestuia prin copierea valorilor 
structurii arbore. 
 
AVLArbore AVLArbore::operator = (AVLArbore & arbore) 
{ 
 StergereArbore(this->radacina); 
 CopiereArbore((*this),arbore.radacina); 
 return *this; 
} 
 

Metoda utilizată pentru ştergerea arborelui AVL este dată de operaţia 
specifică structurilor arborescente binare, ce realizează eliberarea memoriei 
de jos în sus, pornind cu nodurile frunză. 
 
void AVLArbore::StergereArbore(AVLNod * &rad){ 
 if(rad!=NULL){ 
  StergereArbore(rad->st); 
  StergereArbore(rad->dr); 
  delete rad; 
  rad = NULL; 
 } 
} 
 

Operaţia de inserare în arborii AVL este derivată din metoda specifică 
arborilor binari de căutare. Operaţiile suplimentare sunt necesare procesului 
de reechilibrare şi de conservare a caracteristicii acestui tip de structură, 
menţinerea gradului de echilibru în mulţimea {-1; 0; 1} pentru toate 
nodurile arborelui. 

Metoda AVLInsert parcurge o serie de etape necesare inserării unui 
nou nod, nodNou, într-un arbore de tip AVL, gestionat prin intermediul 
pointerului arbore: 

- dacă arborele este vid, noul nod devine rădăcina arborelui AVL; 
- dacă arborele există, se caută poziţia noului nod prin parcurgerea 

acestuia asemenea unui arbore binar de căutare; parcurgerea 
este recursivă, accesându-se nodul fiu stânga sau dreapta funcţie 
de rezultatul comparării valorii nodului nou cu valoarea nodului 
curent; 



- se recalculează gradul de echilibru pentru toate nodurile parcurse; 
fiind un proces recursiv, revenirea din apelul rutinei asigură 
poziţionarea pe nodul anterior; variabilele echilibruNou şi 
Reechilibrare indică faptul că a avut loc o modificare de structură 
în apelul anterior, lucru care poate conduce la dezechilibre; în 
cazul în care aceste variabile sunt iniţializate cu valoare 1, este 
testat gradul de echilibru al nodului curent; 

 
void AVLArbore::AVLInsert(AVLNod* &arbore,AVLNod * nodNou, int & 
echilibruNou){ 
 int Reechilibrare; 
 
 if(arbore == NULL){ 
  arbore = nodNou; 
  arbore->Echilibru = 0; 
  echilibruNou = 1; 
 } 
 else 
  if(nodNou->Info<arbore->Info){ 
   AVLInsert(arbore->st,nodNou,Reechilibrare); 
   if(Reechilibrare){ 
    if(arbore->Echilibru == -1) 
    
 ReechilibrareSubarboreStang(arbore,echilibruNou); 
 
    else 
     if(arbore->Echilibru == 0){ 
      arbore->Echilibru = -1; 
      echilibruNou = 1; 
     } 
     else{ 
      arbore->Echilibru = 0; 
      echilibruNou = 0; 
     } 
   } 
   else 
    echilibruNou = 0; 
  } 
  else{ 
   if(nodNou->Info>arbore->Info){ 
    AVLInsert(arbore->dr, nodNou, Reechilibrare); 
    if(Reechilibrare){ 
     if(arbore->Echilibru == -1){ 
     arbore->Echilibru = 0; 
     echilibruNou = 0; 
    } 
    else 
     if(arbore->Echilibru == 0){ 
      arbore->Echilibru = 1; 
      echilibruNou = 1; 
     } 
     else 
     
 ReechilibrareSubarboreDrept(arbore,echilibruNou); 
    } 
    else 
     echilibruNou = 0; 
   } 
   else 
    echilibruNou = 0;  



}} 

 
- identificarea nodului dezechilibrat, pivotul operaţiilor de rotire, 

este realizată doar dacă variabila Reechilibrare este setată, prin 
verificarea elementelor vizitate; 

- dacă nodul curent are gradul de echilibru egal cu -1 iar nodul nou 
a fost inserat în subarborele stâng, are loc reechilibrarea acestuia 
prin apelul metodei  ReechilibrareSubarboreStang; 

- dacă nodul curent are gradul de echilibru egal cu 0 sau +1 iar 
nodul nou a fost inserat în subarborele stâng, atunci noul grad de 
echilibru al elementului curent este -1, respectiv 0; prin 
iniţializarea variabilei echilibruNou cu valoare 1 se continuă 
verificarea dezechilibrului la nodurile superioare; dacă nodul 
curent devine perfect echilibrat, se opreşte verificarea în acest 
punct, iar echilibruNou ia valoarea 0; 

- dacă nodul curent are gradul de echilibru egal cu +1 iar nodul nou 
a fost inserat în subarborele drept, are loc reechilibrarea acestuia 
prin apelul metodei  ReechilibrareSubarboreDrept; 

- dacă nodul curent are gradul de echilibru egal cu 0 sau -1 iar 
nodul nou a fost inserat în subarborele drept, atunci noul grad de 
echilibru al elementului curent este +1, respectiv 0; asemenea 
situaţiei anterioare, variabila echilibruNou condiţionează prin 
valorile ei continuarea sau încetarea procesului de căutare; 

- metoda ReechilibrareSubarboreStang ia în considerare toate 
situaţiile posibile de dezechilibru către stânga şi în funcţie de tipul 
acesteia reechilibrează subarborele cu rădăcina în nodul pivot prin 
rotaţie simplă la dreapta, metoda RotatieSimplaDreapta, sau prin 
rotaţie dublă la dreapta, metoda RotatieDublaDreapta; se observă 
caracterul general al acestei metode de reechilibrare ce este 
utilizată şi la ştergerea unui nod, procesul fiind descris în 
continuare;  

 
void AVLArbore::ReechilibrareSubarboreStang(AVLNod * &pivot, int 
&echilibruNou){ 
 AVLNod * FiuStanga = pivot->st; 
 
 if(FiuStanga->Echilibru == -1){ 
  RotatieSimplaDreapta(pivot); 
  echilibruNou = 0; 
 } 
 else 
  if(FiuStanga->Echilibru == 1){ 
   RotatieDublaDreapta(pivot); 
   echilibruNou = 0; 
  } 
  else 
   //situatie specifica operatiei de stergere 
   if(FiuStanga->Echilibru == 0){ 
    RotatieSimplaDreaptaStergere(pivot); 
    echilibruNou = 0; 
   } 
} 
 



- metoda ReechilibrareSubarboreDrept analizează cazurile de 
dezechilibru la dreapta, reechilibrând pivotul prin una din cele 
două tehnici de rotaţie la stânga; 

 
void AVLArbore::ReechilibrareSubarboreDrept(AVLNod * &pivot, int 
&echilibruNou){ 
 AVLNod * FiuDreapta = pivot->dr; 
 
 if(FiuDreapta->Echilibru == 1){ 
  RotatieSimplaStanga(pivot); 
  echilibruNou = 0; 
 } 
 else 
  if(FiuDreapta->Echilibru == -1){ 
   RotatieDublaStanga(pivot); 
   echilibruNou = 0; 
  } 
  else 
   //situatie specifica operatiei de stergere 
   if(FiuDreapta->Echilibru == 0){ 
    RotatieSimplaStangaStergere(pivot); 
    echilibruNou = 0; 
   } 
} 
 

Metoda AVLInsert este o metodă internă clasei. Aceasta este epelată 
din programul principal de către metoda publică Insert ce primeşte ca 
parametru valoarea de inserat în arborele AVL. 
 
void AVLArbore::Insert(const int info) 
{ 
 AVLNod* RadacinaArbore = this->radacina; 
 AVLNod* NodNou = new AVLNod(0,info,NULL,NULL); 
 
 int EchilibruNou = 0; 
 
 AVLInsert(RadacinaArbore,NodNou,EchilibruNou); 
 
 this->radacina = RadacinaArbore; 
} 
 

Spre deosebire de operaţie de inserare, care necesită maxim o 
singură rotaţie pentru remedierea dezechilibrului, în cazul procedurii de 
ştergere a unui nod sunt necesare mai multe operaţii de rotaţie pentru a 
reechilibra arborele AVL şi pentru a conserva caracteristicile acestuia. 
Etapele parcurse se concentrează pe analiza tuturor nodurilor direct 
influenţate 

- se identifică nodul de şters pe baza caracteristicilor arborilor 
binari de căutare;  

- pe măsură ce se parcurge arborele, nodurile vizitate sunt salvate 
într-o structură de tip stivă; această operaţie suplimentară este 
necesară pentru a permite reconstruirea în sens invers a drumului 
parcurs de la rădăcina arborelui;  

 
 
 



struct NodeStack 
{ 
 AVLNod* Nod; 
 NodeStack *next; 
}; 
 
class AVLNodeStack 
{ 
private: 
 NodeStack * VarfStiva; 
public: 
 AVLNodeStack() 
 { 
  VarfStiva=NULL; 
 } 
 
 void PUSH(AVLNod* &NodNou){ 
  NodeStack *elementNou= new NodeStack; 
  elementNou->Nod = NodNou; 
  if(this->VarfStiva==NULL){ 
   this->VarfStiva = elementNou; 
   elementNou->next=NULL; 
  } 
  else 
  { 
   elementNou->next = this->VarfStiva; 
   this->VarfStiva = elementNou; 
  } 
 } 
 
 AVLNod* POP(){ 
  if(this->VarfStiva==NULL) 
   return NULL; 
  else 
  { 
   NodeStack *elementSters = this->VarfStiva; 
   AVLNod* NodAuxiliar = this->VarfStiva->Nod; 
   this->VarfStiva = this->VarfStiva->next; 
   delete elementSters; 
   return NodAuxiliar; 
  } 
 
 } 
 void AfiseazaStiva() 
 { 
  NodeStack *temp = this->VarfStiva; 
  while(temp!=NULL) 
  { 
   printf("\n Nod in stiva este %d",temp->Nod->Info); 
   temp=temp->next; 
  } 
 } 
}; 

 
- nodul se şterge în mod asemănător cu operaţia asociată arborilor 

binari de căutare; dacă nodul este frunză se şterge efectiv; dacă 
nodul are un singur fiu, acesta îl înlocuieşte în structură; dacă 
nodul are cei doi fii, este înlocuit de nodul cu valoarea cea mai 
mare din subarborele drept, metoda Stergere; 

 



int AVLArbore::Stergere(AVLNod*& SubarboreDrept, AVLNodeStack &stiva ) 
{ 
 if(SubarboreDrept->st) 
 { 
  stiva.PUSH(SubarboreDrept); 
  return AVLArbore::Stergere(SubarboreDrept->st,stiva); 
 } 
 else 
 { 
  AVLNod * NodSters= SubarboreDrept; 
  int valoare = SubarboreDrept->Info; 
  SubarboreDrept = SubarboreDrept->dr; 
  delete NodSters; 
  return valoare; 
 } 
} 
 

- sunt analizate toate nodurile parcurse şi sunt reechilibrate 
situaţiile de dezechilibru luând în calcul ipotezele de aplicare a 
celor patru tipuri de rotaţii; operaţia de ştergere se încheie în 
momentul în care sunt verificate toate locaţiile de dezechilibru 
posibil; pentru abordarea aleasă ca soluţie în acest capitol, 
operaţia se consideră  încheiată în momentul în care stiva este 
golită; 

- din analiza metodei Stergere, se observă că în etapa de 
identificare a nodului cu valoarea ce mai mare din subarborele 
drept, ce va lua locul nodului de şters, este completată de 
salvarea în stiva utilizată a nodurilor vizitate; necesitatea acestei 
operaţii suplimentare este dată de faptul că ştergerea unui nod 
poate conduce la dezechilibrarea nodurilor superioare aflate pe 
drumul de la rădăcină la poziţia lui; de asemenea, reechilibrarea 
unui nod părinte poate conduce la generarea unei alte situaţii de 
dezechilibru; pentru a exemplifica această situaţie, se ia în 
considerare arborele AVL din figura 14.19 în care se şterge nodul 
cu valoarea 50; 
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Figura 14.19 Structură arborescenta de tip AVL 
 

Prin ştergerea nodului cu valoarea 50, se obţine stiva cu valorile 47 şi 
35. Din analiza acestor noduri, se observă că arborele AVL, descris în figura 
14.20, devine dezechilibrat în nodul cu valoarea 47. 
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Figura 14.20 Structură arborescenta de tip AVL dezechilibrată 
 

Prin reechilibrare, aplicând o rotaţie simplă la dreapta în pivot, se 
obţine o nouă situaţie de dezechilibru în următoare valoare din stivă, 35, 
figura 14.20. Printr-o rotaţie simplă la dreapta în nodul cu valoarea 35 
considerat pivot, arborele AVL este reechilibrat. Deoarece stiva a fost golită, 
operaţie de ştergere se consideră încheiată, figura 14.21. 
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Figura 14.21 Structură arborescenta de tip AVL 
 

Există cazuri în care prin ştergerea unui nod, se ajunge la situaţii de 
dezechilibru diferite de ipotezele analizate la operaţia de inserare. Luând în 
considerare arborele AVL din figura 14.22, se propune ştergerea nodului cu 
valoarea 16.  
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Figura 14.22 Ştergere din structură arborescenta de tip AVL 
 

Situaţia diferă de cele întâlnite la inserare prin faptul că în acest 
dezechilibru pivotul are un grad de echilibru egal cu +2, iar nodul fiu de pe 
direcţia dezechilibrului are un echilibru egal cu 0. Soluţia acestui 
dezechilibru este dat de o rotaţie simplă în pivot la stânga. 



Din acest motiv, metodele clasei AVLArbore, destinate analizei şi 
implementării tipului de rotaţie potrivit, sunt modificate în cazul operaţiei de 
ştergere. Cele două metode descrise anterior , ReechilibrareSubarboreDrept 
şi ReechilibrareSubarboreStang analizează şi situaţiile particulare în care 
nodul de pe direcţia dezechilibrului are gradul de echilibru egal cu zero, caz 
în care sunt apelate metodele RotatieSimplaDreaptaStergere şi 
RotatieSimplaStangaStergere. 
 
void AVLArbore::RotatieSimplaDreaptaStergere(AVLNod * &pivot) 
{ 
 AVLNod *FiuStanga = pivot->st; 
 pivot->st = FiuStanga->dr; 
 FiuStanga->dr = pivot; 
 
 pivot->Echilibru += 1; 
 FiuStanga->Echilibru += 1; 
 
 pivot = FiuStanga; 
} 
 
void AVLArbore::RotatieSimplaStangaStergere(AVLNod * &pivot) 
{ 
 AVLNod *FiuDreapta = pivot->dr; 
 pivot->dr = FiuDreapta->st; 
 FiuDreapta->st = pivot; 
 
 pivot->Echilibru -=1; 
 FiuDreapta->Echilibru -= 1; 
 
 pivot = FiuDreapta; 
} 
 

Pentru a implementa operaţia de ştergere, se defineşte în clasa 
AVLArbore metoda Delete. 
 
void AVLArbore::Delete(const int Info) 
{ 
 int valTemp; 
  
//definesc stiva nodurilor parcurse 
 AVLNodeStack stiva; 
 
//se sterge nodul 
AVLDelete(this->radacina,Info,stiva); 
 
//se analizeaza nodurile parcurse 
AVLNod *temp = stiva.POP(); 
while(temp!=NULL){ 
 temp->Echilibru = this->CalculeazaEchilibru(temp); 
 if(temp->Echilibru==2){ 

   AVLNod *parinte = stiva.POP(); 
    if(parinte!=NULL){ 
  if(parinte->dr==temp) 
  this->ReechilibrareSubarboreDrept(parinte->dr,valTemp); 
  else 
  this->ReechilibrareSubarboreDrept(parinte->st,valTemp); 
  parinte->Echilibru=this->CalculeazaEchilibru(parinte); 
   } 
  } 



 else 
     if(temp->Echilibru==-2){ 
  AVLNod *parinte = stiva.POP(); 
  if(parinte!=NULL){ 
  if(parinte->dr==temp) 
  this->ReechilibrareSubarboreStang(parinte->dr,valTemp); 
  else 
  this->ReechilibrareSubarboreStang(parinte->st,valTemp); 
  parinte->Echilibru=this->CalculeazaEchilibru(parinte); 
    } 
   } 
  temp=stiva.POP(); 
 } 
} 
 

Această metodă se bazează pe apelul metodei AVLDelete pentru a 
realiza ştergerea efectivă a nodului dorit, secvenţa de cod asociată fiind 
concentrată pe analiza nodurilor din stiva. Pentru fiecare din acestea, se 
recalculează gradul de echilibru prin intermediul metodei 
CalculeazaEchilibru. 
 
int AVLArbore::CalculeazaEchilibru(AVLNod *& radacina) 
{ 
 return inaltime(radacina->dr) - inaltime(radacina->st); 
}  
 

Metoda AVLDelete completează metoda întâlnită la ştergerea 
nodurilor din arbori binari de căutare prin gestiunea unei stive în care sunt 
inserate toate valorile întâlnite.  
 
void AVLArbore::AVLDelete(AVLNod* &arbore,const int Info,AVLNodeStack 
&stiva){ 
 AVLNod *NodAuxiliar; 
 if(arbore){ 
  if(Info == arbore->Info){ 
   NodAuxiliar = arbore; 
   if(!NodAuxiliar->dr){ 
    arbore = NodAuxiliar->st; 
    delete NodAuxiliar; 
   } 
   else 
    if(!NodAuxiliar->st){ 
     arbore = NodAuxiliar->dr; 
     delete NodAuxiliar; 
    } 
    else{ 
    stiva.PUSH(arbore); 
  arbore->Info = AVLArbore::Stergere(arbore->dr,stiva); 
    } 
  } 
  else 
   if(Info < arbore->Info){ 
    stiva.PUSH(arbore); 
    AVLDelete(arbore->st,Info,stiva); 
   } 
   else{ 
    stiva.PUSH(arbore); 
    AVLDelete(arbore->dr,Info,stiva); 
   } 



  } } 

 
În ciuda efortului asociat implementării şi executării secvenţelor de rotire 
ale structurii, arborii AVL oferă un ridicat nivel de eficienţă în ceea ce 
priveşte procesul de căutare în arbori binari de căutare. Structura 
arborescentă echilibrată 
 
 

14.4 Caracteristici ale arborilor Roşu & Negru  
 

 Arborii Roşu & Negru reprezintă o altă tipologie de arbori binari de 
căutare echilibraţi, fiind prima dată definiţi de Rudolf Bayer în 1972 sub 
forma de arbori simetrici. Asemenea arborilor AVL, această structură este 
caracterizată de o complexitate a operaţiei de căutare egală cu O(log n), n 
fiind numărul de noduri din arbore,  datorită modului în care nodurile sunt 
plasate în mod simetric în subarborii stângi sau drepţi. 

Spre deosebire de arborele AVL, în care principala caracteristică se 
determină pe baza gradului de echilibru al fiecărui nod, în structurile 
arborescente de tip Rosu & Negru, factorul cel mai important este dat de 
culoarea fiecărui nod: 

- fiecare nod are una dintre cele două culori, roşu sau negru; 
- nodul rădăcină este întotdeauna negru; 
- ambele noduri fiu ale unui nod părinte roşu sunt negre; un nod 

roşu nu poate avea ca părinte decât un nod negru; 
- toate drumurile de la rădăcină la oricare din nodurile frunză conţin 

acelaşi număr de noduri negre. 
Analizând aceste caracteristici sunt derivate proprietăţi noi care să fie 

utilizate în implementarea algoritmilor sau care să evidenţieze eficienţa 
acestui tip de structură faţă de un arbore binar de căutare: 

- în arborele Roşu & Negru nu există pe un drum două noduri 
adiacente de culoare roşie deoarece orice nod roşu are ambii fii 
de culoare neagră; 

- dacă se consideră că cel mai scurt drum din arbore are numai 
noduri negre în număr de k, atunci cel mai lung drum din arbore 
are maxim dublu noduri, 2 * k; ipoteza este demonstrată pe baza 
faptului că toate drumurile din acest tip de structură au acelaşi 
număr de noduri negre, fapt care conduce la concluzia că drumul 
cel mai lung poate fi format doar din perechi de noduri adiacente 
de culori opuse, figura 14.23. 
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Figura 14.23 Structură arborescenta de tip Roşu & Negru 
 



Pentru a facilita implementarea operaţiilor cu structuri arborescente 
de tip Rosu & Negru se propune o structură asociată nodului, clasa RNNode 
 
class RNNod 
{ 
 int Info; 

bool Culoare; 
 RNNod *st; 
 RNNod *dr; 
 RNNod *parinte; 
  
}; 
 

Elementele de tip RNNode includ pe lângă atributele întâlnite la toate 
structurile arborescente binare: 

- informaţia utilă; 
- cele două legături către nodurile fiu din stânga, respectiv, 

dreapta; 
şi informaţia ce descrie culoare nodului, precum şi o legătură suplimentară 
către nodul părinte. Această abordare contribuie la implementarea mult mai 
facilă a operaţiilor de inserare sau ştergere, minimizând în timp real efortul 
de a identifica nodul părinte al nodului curent. 
   
 

14.5 Operaţii pe arbori Roşu & Negru  
 

Operaţiile pe arborii Roşu şi Negru descrise, inserare şi ştergere, sunt 
realizate asemenea arborilor binari de căutare deoarece acest tip de arbore 
este o structură binară particulară. Asigurarea caracteristicilor specifice 
acestui tip de structură arborescentă este realizată printr-o serie de operaţii 
auxiliare şi complementare procesului de inserare sau ştergere ce constau în 
rotiri sau modificări de culoare.  

Pentru a descrie metodele specifice operaţiilor se defineşte ca nod 
bunic al nodului nou creat, nodul ce se găseşte pe al doilea nivel superior 
faţă de nodul analizat, figura 14.24. Se defineşte ca nod unchi al nodului 
analizat, al doilea nod fiu al nodului bunic.  
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Figura 14.24 Relaţii între noduri Roşu & Negru 
 
 



Pentru a determina poziţia acestor noduri particulare este utilizat 
atributul  RNNod *parinte al fiecărui obiect de tip RNNod. De exemplu nodul 
bunic al nodului curent este determinat prin expresia NodCurent->parinte-
>parinte, iar nodul unchi este dat de NodCurent->parinte->parinte->st sau 
NodCurent->parinte->parinte->st în funcţie de poziţia acestuia relativă la 
nodul părinte al nodului curent. 

Operaţia de inserare este analizată prin prisma cazurilor particulare. 
Acestea sunt definite de contextul în care se găseşte nodul nou creat şi de 
situaţiile de dezechilibru apărute. 

Fiecare nod nou creat şi inserat în structura arborescentă de tip Roşu 
şi Negru are culoarea iniţială roşie. Astfel se încearcă evitarea situaţie în 
care este încălcată proprietatea că toate drumurile din arbore au acelaşi 
număr de noduri negre. 

Se consideră arborele Roşu & Negru vid în care se inserează valoarea 
43. prin inserare se obţine structura arborescentă din figura 14.25 ce 
trebuie reechilibrată prin modificarea culorii nodului rădăcină în negru. 
Astfel nodul rădăcină este negru. 
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Figura 14.25 Arbore Roşu & Negru cu un singur nod 
 

În arborele analizat se inserează valorile 25 şi 78. Nodurile nou create 
au culoare roşie, figura 14.26 şi nu este încălcată nici o proprietate a 
arborilor. 
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Figura 14.26 Arbore Roşu & Negru echilibrat 
 

Se ia în considerare situaţia în care se inserează nodul cu valoarea 
14.  Nodul nou creat este roşu, fapt care încalcă proprietăţile arborilor Roşu 
& Negru, deoarece un nod roşu are întotdeauna un nod negru ca părinte. 
Dacă nodul este recolorat în negru atunci toate drumurile din arbore nu vor 
avea acelaşi număr de noduri negre. Situaţia este analizată prin prisma 
nodului părinte şi a nodului unchi. Dacă aceste două noduri sunt roşii atunci 
ele îşi schimbă culoarea în negru, iar nodul bunic, părintele celor două 
noduri, devine negru, figura 14.27. Dacă prin modificarea culorii nodului 
bunic, arborele este dezechilibrat atunci situaţia este remediată în manieră 
recursivă până se ajunge la rădăcina arborelui. 
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Figura 14.27 Arbore Roşu & Negru reechilibrat 
 

În cazul arborelui din figura 14.27, nodul rădăcină devine negru la 
pasul următor, structura fiind reechilibrată. 

Se consideră exemplul dat de inserarea valorii 17. Nodul nou are 
culoare roşie, fapt ce încalcă proprietatea acestui tip de arbore, toate 
nodurile fiu ale unui nod roşu sunt negre, figura 14.28. 
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Figura 14.28 Arbore Roşu & Negru dezechilibrat 
 

Reechilibrarea arborelui în această situaţie este realizată printr-o 
dublă rotaţie. Într-o primă fază, se realizează o simplă rotaţie la stânga în 
nodul părinte. Ipoteza de lucru este definită de faptul că: 

- nodul părinte are culoare roşie, dar nodul unchi este fie negru, fie 
nod NULL; 

- nodul nou creat este fiu dreapta pentru nodul părinte, care la 
rândul său este nod fiu stânga pentru nodul bunic. 

Rotaţia este realizată asemenea arborilor AVL considerând pivot, 
nodul părinte. După această prima rotaţie se obţine arborele din figura 
14.29. 
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Figura 14.29 Arbore Roşu & Negru dezechilibrat 
 

Structura arborescentă este dezechilibrată prin prisma aceleiaşi 
proprietăţi încălcate. Din acest motiv este necesară o a doua operaţie de 
rotaţie ce are ca pivot, nodul bunic. De data aceasta, rotaţie se realizează la 
dreapta, având sens opus cu direcţia nodului fiu faţă de nodul părinte. 
Ipoteza de lucru este definită de condiţiile: 

- nodul părinte are culoare roşie, dar nodul unchi este fie negru, fie 
nod NULL; 

- noul nod părinte este fiu stânga pentru nodul bunic şi nodul nou 
inserat este fiu stânga pentru acesta. 

Rotaţia descrisă în figura 14.30 este însoţită şi de o recolorare a 
nodurilor, astfel încât nodul bunic devine roşu şi noul nod părinte devine 
negru. 
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Figura 14.30 Arbore Roşu & Negru reechilibrat 
 

În cazul în care, se insera valoarea 10 atunci erau atinse condiţiile 
implementării celei de a doua operaţie de rotaţie fiind evitată prima rotaţie 
la stânga. 

Dacă nodul nou are ca părinte un nod de culoare roşie şi acesta este 
fiul din dreapta al nodului bunic, atunci situaţia reprezintă imaginea în 
oglindă a cazului anterior. 

De exemplu, se inserează valorile 89 şi 95 în această ordine. Figura 
14.31 descrie păşii parcurşi pentru reechilibrarea arborelui. 
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Figura 14.31 Reechilibrare arbore Roşu & Negru 
 

Situaţia descrisă anterior este condiţionată de atingerea următoarelor 
condiţii de lucru: 

- nodul părinte are culoare roşie, dar nodul unchi este fie negru, fie 
nod NULL; 

- nodul părinte este fiu dreapta pentru nodul bunic şi nodul nou 
inserat este fiu dreapta pentru acesta. 

În cazul în care ultima condiţie nu este îndeplinită, noul nod fiind fiu 
stânga, situaţia este ajustată prin operaţia de rotire la dreapta în nodul 
părinte. 

Operaţia de ştergere în arbori Roşu şi Negru completează procesul 
întâlnit la arborii binari de căutare prin operaţii specifice de recolorare sau 
rotire a nodurilor astfel încât să fie păstrate caracteristicile acestei structuri 
arborescente. 

În cazul în care nodul de şters are două noduri fiu atunci acesta este 
înlocuit de nodul cu valoarea cea mai mare din subarborele stâng sau de 
nodul cu valoarea cea mai mică din subarborele drept. Copierea de valoarea 
este însoţită de păstrarea culorii nodului şters astfel încât să nu fie afectat 
arborele. Oricare variantă se alege, nodul care va înlocui nodul de şters este 
la rândul său eliminat din structura arborescentă. Acesta este fie nod 
frunză, fie are maxim un fiu. De exemplu, se şterge nodul cu valoarea 43 
din arborele descris în figura 14.32. 
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Figura 14.32 Ştergere nod din arbore Roşu & Negru 
 

Prin prisma exemplului anterior, problemele apărute la ştergerea 
unui nod dintr-un arbore Roşu şi Negru sunt concentrate în cazurile 
de ştergerea unui nod care are maxim un fiu. 

Dacă nodul de şters este de culoare roşie, figura 14.30, atunci nodul 
său fiu este de culoare neagră, aceasta fiind o caracteristică a arborilor Roşu 
şi Negru. Ştergerea nodului implică în această situaţie înlocuirea sa cu nodul 



fiu. Arborele este în continuare Roşu şi Negru deoarece ştergerea unui nod 
roşu nu are implicaţii asupra numărului de noduri negre de pe fiecare drum. 
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Figura 14.33 Cazul 1 de ştergere nod din arbore Roşu & Negru 
 

Dacă nodul şters este de culoare neagră, iar fiul său este de culoare 
roşie, figura 14.34, atunci arborele devine dezechilibrat pe drumul care 
trece prin această zonă deoarece numărul de noduri negre este mai mic cu 
unul. Reechilibrarea structurii arborescente se face în această situaţie prin 
recolorarea în negru a nodului fiu. Astfel este refăcut numărul de noduri 
negre. 
 

 
15

79

43 

17

14 54 

nod de şters 

Înlocuire cu unicul fiu al 
nodului de şters 

83

5948 80

79 

43

14

15 54 83 

59 48 80 

recolorat in 
negru 

 
 

Figura 14.34 Cazul 2 de ştergere nod din arbore Roşu & Negru 
 

Situaţiile complexe apărute la ştergerea unui nod dintr-un arbore de 
tip Roşu şi Negru sunt apar în cazul în care nodul de şters şi fiul său sunt de 
culoare neagră. Prin eliminarea nodului, arborele devine dezechilibrat 
deoarece o parte din drumuri conţin cu un nod negru mai puţin. Spre 
deosebire de cazurile prezentate anterior, nu mai este posibilă refacerea 
numărului de noduri negre prin recolorarea fiului deoarece acesta are deja 
culoarea neagră. Reechilibrarea arborelui este realizată printr-un număr fix 
de operaţii de rotire sau recolorare. 

Pentru a descrie aceste cazuri particulare de dezechilibru şi soluţiile 
asociate, se fac o serie de notaţii care să ajute înţelegerea operaţiilor, figura 
14.35. Se notează cu: 

- P, nodul părinte al nodului de şters; 
- F, nodul fiu al nodului de şters; 
- B, nodul bunic al nodului de şters; acest nod este nodul părinte al 

nodului P; 
- U, nodul unchi al nodului de şters; acest nod este reprezentat de 

al doilea fiu al nodului B; 



- N1 nodul nepot al nodului de şters; este reprezentat de fiul din 
stânga al nodului unchi; 

- N2 nodul nepot al nodului de şters; este reprezentat de fiul din 
dreapta al nodului unchi; 
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Figura 14.35 Arbore Roşu & Negru 
 

Următorul caz analizat este dat de figura 14.36 în care nodul cu valoarea 
25 este şters. Situaţia este descrisă de ipotezele: 

- nodul de şters este negru; 
- unicul fiu al nodului de şters este negru; 
- nodul unchi al nodului de şters este negru; 
- nodul părinte este negru; 
- nodurile nepoţi sunt negre. 
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Figura 14.36 Cazul 3 de ştergere nod din arbore Roşu & Negru 

 
Prin ştergerea nodului cu valoarea 25, arborele sau subarborele 

analizat ce are rădăcină pe nodul cu valoarea 32 este dezechilibrat la 
dreapta deoarece drumurile care pornesc din rădăcină şi continuă pe partea 
stângă au cu un nod negru mai puţin. Reechilibrarea arborelui se realizează 
prin modificarea culorii nodului unchi, valoarea 79, în roşu, figura 14.37. 
Astfel, este redus cu unu numărul de noduri negre din drumurile ce pornesc 
din rădăcina 32. 
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Figura 14.37 Soluţie de reechilibrare caz 3 pentru arbore Roşu & Negru 
 

În cazul în care, nodul cu valoarea 32 reprezintă rădăcina unui 
subarbore, analiza se continuă în sus până când se atinge rădăcina arborelui 
sau până când arborele este reechilibrat pe baza unei soluţii din cele 
descrise. 

Al patrulea caz de ştergere a unui nod dintr-un arbore Roşu şi Negru 
ia în considerare situaţia descrisă în figura 14.38: 

- nodul de şters este negru; 
- unicul fiu al nodului de şters este negru; 
- nodul unchi al nodului de şters este negru; 
- nodul părinte este roşu; 
- nodurile nepoţi sunt negre. 
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Figura 14.38 Cazul 4 de ştergere nod din arbore Roşu & Negru 

 
Asemenea cazului anterior, arborele îşi pierde calitatea de a fi Roşu şi 

Negru în urma ştergerii deoarece nu toate drumurile de la rădăcină la 
nodurile frunză au acelaşi număr de noduri negre. Reechilibrarea este 
realizată prin interschimbarea culorilor nodului părinte şi nodului unchi, 
figura 14.39. 
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Figura 14.39 Soluţie de reechilibrare caz 4 pentru arbore Roşu & Negru 
 

În situaţia în care arborele din figura 14.34 reprezintă un subarbore 
atunci soluţia de reechilibrare prezentată are doar efecte locale, deoarece 
lungimea măsurată în număr de noduri negre a tuturor drumurilor din acest 
subarbore este mai mică cu unu faţă de situaţia iniţială. Din acest motiv, 
reechilibrarea se continuă recursiv către rădăcina arborelui. 

Cazul al cincilea de ştergere a unui nod ia în considerare ipotezele 
descrise în figura 14.40:  

- nodul de şters este negru; 
- unicul fiu al nodului de şters este negru; 
- nodul unchi al nodului de şters este roşu; 
- nodul părinte este negru; 
- nodurile nepoţi sunt negre. 
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Figura 14.40 Cazul 5 de ştergere nod din arbore Roşu & Negru 

 
Reechilibrarea arborelui pentru cazul 5 de dezechilibru se realizează 

prin interschimbarea culorilor nodului unchi şi nodului părinte, urmată de o 
rotaţie la stânga în nodul părinte, figura 14.41. 
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Figura 14.41 Soluţie de reechilibrare caz 5 pentru arbore Roşu & Negru 
 

Analizând figura 14.41 se observă că soluţia cazului 5 nu conduce la 
reechilibrarea totală a arborelui. Zona de dezechilibru este modificată astfel 
încât să poată fi reechilibrată într-un număr finit de paşi. Această este 
analizată prin prisma cazului patru care a fost descris sau prin intermediul 
cazurilor şase şi şapte. De exemplu, arborele obţinut în figura 14.41 este 
reechilibrat, în figura 14.42 prin intermediul soluţie oferite în cazul patru, 
interschimbând culorile nodului cu valoare 32 şi nodului cu valoarea 54. 
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Figura 14.42 Reechilibrare arbore Roşu & Negru din figura 14.41 
 

Următoarele două cazuri analizează culoarea nodurilor nepoţi luând în 
calcul situaţii derivate din cazul patru. 

Cazul şase, descris în figura 14.43, este definit de următoarele 
ipoteze: 

- nodul de şters este negru; 
- unicul fiu al nodului de şters este negru; 
- nodul unchi al nodului de şters este negru; 
- nodul părinte este roşu sau negru; 
- nodul nepot N1 este roşu; 
- nodul nepot N2 este negru. 
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Figura 14.43 Cazul 6 de ştergere nod din arbore Roşu & Negru 

 
Reechilibrarea arborelui din figura 14.43 este realizată prin: 
- interschimbarea culorilor nodului părinte şi a nodului unchi; 
- rotirea subarborelui cu rădăcină în nodul unchi la dreapta. 
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Figura 14.44 Soluţie de reechilibrare caz 6 pentru arbore Roşu & Negru 
 

Rezultatul obţinut în urma operaţiei de schimbare a culorii şi de rotire 
nu conduce la reechilibrarea arborelui. Cu toate acestea, noua formă a 
subarborelui permite reechilibrarea la pasul următor, deoarece situaţia 
curentă descrie cazul şapte . 

Cazul şase, descris în figura 14.45, este definit de următoarele 
ipoteze: 

- nodul de şters este negru; 
- unicul fiu al nodului de şters este negru; 
- nodul unchi al nodului de şters este negru; 
- nodul părinte este roşu sau negru; 
- nodul nepot N1 este roşu sau negru; 
- nodul nepot N2 este roşu. 
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Figura 14.45 Cazul 7 de ştergere nod din arbore Roşu & Negru 

 
Reechilibrarea situaţie descrise în figura 14.46 se realizează prin: 
- interschimbare culoare nod părinte cu nodul unchi; 
- rotire la stânga a arborelui în nodul părinte; 
- modificare culoare nepot N2 în negru. 
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Figura 14.46 Soluţie de reechilibrare caz 7 pentru arbore Roşu & Negru 
 

Figura 14.46 prezintă rezultatul obţinut în urma reechilibrării. Se 
observă eliminarea dezechilibrului din acest arbore sau subarbore. 

Pentru exemplele analizate în acest capitol s-a considerat că nodul de 
şters se găseşte în partea stângă a nodului părinte. Pentru situaţia opusă, 
soluţiile descrise au aceleaşi efect dacă suferă mici modificări prin prisma 
noului reper de vizualizare a arborelui. 

De asemenea, în exemplele prezentate reechilibrarea arborelui are un 
caracter local pentru a descrie tehnicile de reechilibrare, însă realizare unei 
aplicaţii trebuie să implementeze secvenţe care să parcurgă arborele de jos 
în sus, de la poziţia nodului de şters către rădăcina arborelui şi care să 
reechilibreze toată structura. 
 
 
 
 
 


