14. ARBORI ECHILIBRATI

14.1 Echilibrarea structurilor arborescente

Pentru a descrie gradul de echilibru al structurilor arborescente sunt

definite doua abordari:

arbori perfecti echilibrati in care pentru fiecare nod, diferenta dintre
numarul de noduri ale subarborelui drept si stang ia valori in
multimea {-1; 0; +1}; intr-un arbore perfect echilibrat de inaltime
h, toate nodurile frunza sunt pe acelasi nivel si orice nod de pe
nivelurile intermediare 1..h-2 are numarul maxim de fii; de exemplu,
figura 14.1 descrie un arbore binar de cautare perfect echilibrat;

Figura 14.1 Arbore binar perfect echilibrat

cea mai simpla metoda de a obtine un astfel de arbore se bazeaza pe
parcurgerea prin metoda divide et impera a sirului de chei ordonate
crescator si inserarea valorii din mijloc in arbore; aceasta metoda
este ineficienta in practica deoarece presupune realizarea unui volum
mare de calcule dupa fiecare operatie de inserare sau stergere ;
efortul ridicat de prelucrare este dat de parcurgerea in inordine a
arborelui pentru a obtine sirul sortat crescator al cheilor si de
reconstructia structurii ; considerdand un arbore binar de cautare,
metoda utilizata in acest sens, echilibrareArb, are ca parametrii sirul
sortat crescator al valorilor, vectorul chei, dimensiunea acestuia, dim,
limitele intervalului curent, stanga, respectiv, dreapta, si radacina
arborelui ce va fi creat; mentinerea unei astfel de structuri reprezinta
0 operatie cu grad de complexitate foarte ridicat, fapt care conduce la
recrearea arborelui perfect echilibrat dupa fiecare operatie de
inserare sau stergere cu metoda echilibrareArb;

void echlibrareArbore(int *chei, int dim, int stanga, int dreapta,
NodArbore *&radacina){

iT (dreapta>=stanga){
int mijloc=(dreapta+stanga)/2;
if (dreapta-stanga==1){
radacina =inserareArbore(radacina, chei[stanga]);
radacina = inserareArbore (radacina, chei[dreapta]);

else{
if (dreapta==stanga)
radacina = inserareArbore (radacina, chei[stanga]);
else{
radacina = inserareArbore (radacina, chei[mijloc]);
echlibrareArbore (chei,dim,stanga, mijloc -1, radacina);
echlibrareArbore (chei,dim, mijloc +1,dreapta, radacina);

}
}

- imperfect echilibrat in care pentru fiecare nod, diferenta dintre
inaltimea subarborelui drept si indltimea subarborelui stang ia valori
in multimea {-1 ; 0 ; +1}; crearea unei astfel de structuri se bazeaza
pe utilizarea metodei prezentate anterior pornind de la un set de
valori sortate crescator sau descrescator; mentinerea gradului de
echilibru al structurii dupa operatiile de inserare sau stergere este
posibila prin metode cu un grad de complexitate acceptabil si care
sunt specifice unor structuri arborescente echilibrate particulare, AVL,
arbori B, arbori Rosu & Negru; aceste metode implica un efort de
prelucrare mai mic decat volumul operatiilor asociat reconstructiei
arborelui prin metoda echilibrareArb.

Structurile arborescente sunt structuri de date dinamice in care
elementele sunt pozitionate ierarhic in functie de legatura parinte - copil ce
exista intre doua elemente. Din punct de vedere al minimizarii efortului de
regasire, aceasta organizare este mai eficienta in raport cu structurile
dinamice liniare, deoarece reduce numdrul de comparari necesar identificarii
unui element. In cazul unei structuri de date liniare, cel mai nefavorabil caz
descrie o complexitate egalda cu O(m), unde m reprezinta numarul de
elemente, si este generat de cautarea ultimului element. Aceasta situatie
este intalnita si in cazul structurilor arborescente ineficient construite, in
care fiecare nod are maxim un fiu si care au asociata imaginea unei liste.
Pentru a evita acest lucru si pentru de a beneficia de efectele pozitive ale
utilizarii structurilor arborescente in operatiile de cautare se definesc reguli
stricte de realizare ale unei astfel de structuri. Prin prisma acestor reguli,
structurile arborescente se diferentiaza pe mai multe tipuri. Dintre acestea,
structurile arborescente echilibrate ocupa o pondere ridicata in dezvoltarea
de solutii eficiente deoarece descriu un nivel constant de efort apropiat de
cel optim.

Se considera sirul valorilor 23, 10, 27, 18, 3, 2 pe baza carora se
defineste un arbore binar de cautare. Structura arborescenta obtinuta este
descrisa in figura 14.2.

Figura 14.2 Arbore binar de cautare

Din analiza modului in care sunt pozitionate valorile, situatia cea mai
putin favorabila ce caracterizeaza acest arbore binar de cautare este data
de cazul in care nodul ce contine cheia cu valoarea 2 are o frecventa ridicata
de utilizare. Situatia este generata de faptul ca cel mai lung drum de la
nodul radacina la un nod frunza este dat de drumul 23 - 10 - 3 - 2, de
lungime 4. Dimensiunea este determinata de numarul de comparari
necesare identificarii nodului cautat.

Pe baza unei aranjari echilibrate a valorilor, acelasi set de valori este
reprezentat de structura arborescenta urmatoare

Figura 14.3 Arbore binar de cautare echilibrat

Prin prisma cazului cel mai putin favorabil, arborele din figura 14.3
este mai eficient decat cel anterior deoarece numarul maxim de comparari
necesare identificarii oricarui nod din structura este egal cu 3.

In functie de numérul de elemente dintr-un arbore binar de ciutare,
n, o structura echilibrata descrie o complexitate egala cu O(logzn) pentru
cel mai nefavorabil caz. In schimb, o structura arborescenta de acelasi tip,
dar care nu este echilibrata, este caracterizata pentru cel mai nefavorabil
caz de o complexitate egala cu O(n).

Minimizarea efortului de regasire a informatiilor se obtine printr-o
aranjare echilibrata a valorilor pe ambii subarbori ai fiecarui nod.

14.2 Caracteristici ale arborilor AVL

Un arbore AVL, definit prima data de G.M. Adelson-Velskii si E.M.
Landis in [Ande62], este un arbore binar de cautare echilibrat pe inaltime.
Un arbore binar de cautare este AVL daca gradul de echilibru al fiecarui nod
ia valori in multimea {-1,0,1}.

Pentru a masura gradul de echilibru al unui nod se defineste
indicatorul GE ce descrie relatia:

GE = H(SD) - H(SS) (14.1)
unde H() reprezinta functia de calcul a Tinaltimii unei structuri
arborescente. Pentru a determina inaltimea unui arbore, al carui nod
radacina este rad, se utilizeaza formula:

H(rad) = 1 + max (H(subarbore drept), H(subarbore stang)) (14.2)

in care functia max() este utilizata pentru a determina maximul dintre doua
valori.

int max(int valoare_1, valoare 2)

{
}

return valoare_1 < valoare 2 ? valoare_2 : valoare 1;

Pentru valoarea indicatorului GE = 0, nodul este echilibrat, iar pentru
valorile 1 si -1, nodul descrie un dezechilibru la dreapta, respectiv la stanga.
Figura 14.4, descrie arborele binar de cautare pentru care s-a determinat
gradul de echilibru.

Situatiile in care GE are valoarea -1 sau 1 sunt acceptate deoarece,
pentru un numar par de valori este imposibil sa se defineasca un arbore
binar de cautare in care toate nodurile sunt perfect echilibrate.

Figura 14.4 Arbore binar de cautare echilibrat

Arborele AVL, reprezinta un arbore binar de cdutare echilibrat.
Pornind de la aceasta ipoteza, acest tip de arbore mosteneste toate
operatiile implementate de arborii binari de cautare. Caracteristica de
echilibru se gestioneaza prin verificarea atenta a gradului de echilibru,
pentru fiecare nod in parte, in urma operatiilor de inserare si stergere.

Aceste tipuri de prelucrari afecteaza structura arborelui si conduc la situatii
de dezechilibru.

Pentru a mentine arborele AVL, dupa fiecare operatie de inserare,
respectiv stergere, sunt cdutate situatiile de dezechilibru puternic,
identificate prin intermediul nodurilor pentru care indicatorul GE ia valori in
multimea {-2,2}.

Reechilibrarea arborelui binar de cautare si pastrarea caracteristicilor
aferente arborilor AVL se realizeaza prin operatii de rotire:

- rotire simpla la stanga;

- rotire simpla la dreapta;

- dubla rotire la stédnga ;

- dubla rotire la dreapta.

Este important de retinut ca printr-o singura rotatie, selectata in
functie de situatie, un arbore AVL dezechilibrat in urma operatiei de inserare
va fi reechilibrat. In schimb, operatie de reechilibrare in urma stergerii unui
nod este mult mai complexa, necesitand minim o rotatie.

14.3 Operatii pe arbori AVL

Determinarea metodei adecvate de reechilibrare se realizeaza prin
analiza gradului de echilibru a nodurilor aflate pe drumul de la radacina
arborelui la locatia in care a fost inserat, respectiv sters, nodul.

Se considera situatia din figura 14.4 in care se insereaza nodul cu
cheia 1. Arborele binar obtinut este:

Figura 14.5 Arbore binar AVL dezechilibrat

In urma procesului de inserarea se recalculeaza gradul de echilibru al
nodurilor ce sunt afectate. Aecstea noduri se gasesc in multimea nodurilor
{10, 3, 2, 1}. Se observa ca arborele isi pierde caracteristica de a fi AVL
deoarece nodul cu cheia 3 are un grad de echilibru egal cu -2, ceea ce
evidentiaza un dezechilibru puternic la stanga.

Pentru a aplica procesul de echilibrare, bazat pe operatie de rotire, se
identifica un nod, numit pivot, in care se realizeaza rotirea subarborelui.

Selectarea nodului pivot se face printr-o abordare jos-sus pornind de
la locatia nodului inserat, respectiv, sters catre radacina arborelui.

Reechilibrarea arborelui se face cat mai aproape de locatia care a
generat dezechilibrul. Astfel, printr-un numar minim de rotatii se
reconstruieste caracteristica arborelui AVL.

In figura, 14.5, nodul pivot este nodul a carui cheie are valoarea 3.
Pentru a reechilibra arborele este nevoie sa transferam o parte din
greutatea subarborelui stang catre subarborele drept al nodului pivot.

Pentru a identifica operatia de rotatie corespunzatoare se analizeaza
gradul de echilibru al nodului pivot si cel al nodului fiu de pe directia
dezechilibrului. Analizand arborele din figura 14.4, se observa ca nodul
pivot, cu cheia 3, are gradul de echilibru GE = -2, ceea ce implicd un
dezechilibru la stadnga. Deoarece nodul fiu stanga, cu cheia 2, are
dezechilibru simplu tot la stanga, reechilibrarea se realizeaza prin operatia
de rotire simpla la dreapta, figura 14.6.

NOD FIU PE
DIRECTIA
DEZECHILIBRULU

- Subarbore drept
pivot

EY - Subarbore stang
fiu dreapta pivot

Figura 14.6 Procesul de rotire simpla la dreapta

Procesul de rotire simpla la dreapta implica existenta a doua
elemente principale, nodul pivot, ce este dezechilibrat puternic la stdnga si
fiul acestuia de pe directia dezechilibrului, care este la randul sau
dezechilibrat slab tot la stanga. Pentru a reechilibra arborele in aceasta
situatie este necesar si suficient sa scadem cu o unitate finaltimea
subarborelui stang al pivotului si sa crestem cu o unitate inaltimea
subarborelui drept. Pentru a atinge acest obiectiv, se modifica cele doua
legaturi evidentiate in figura 14.5. Se observa ca subarborele Y devine
subarbore drept pentru nodul pivot, fapt ce nu contrazice existenta unui
arbore binar de cautare deoarece toate valorile din acest subarbore sunt
mai mici decat valoarea nodului pivot.

Prin aplicarea procesului de rotire, arborele se reechilibreaza si isi
pastreaza caracteristicile specifice unui arbore AVL si unui arbore binar de
cautare. Se observa ca prin rotatia simpla la dreapta sunt afectate doar
gradele de echilibru ale nodului pivot si nodului fiu de pe directia
dezechilibrului, nodul fiu stanga. Prin modificarea structurii arborescente,
cele doua noduri devin perfect echilibrate, GE = 0. Explicatia este data de
faptul ca nodul fiu stdnga urca pe nivelul superior in locul nodului parinte,
iar acesta, fiind nod pivot, coboara in subarborele drept. Figura 14.7

utilizeaza ca reper inadltimea subarborelui Y pentru a descrie modul in care
se ajunge la acest rezultat. Este evidentiat modul de calcul al indicatorului
GE pentru a sublinia modul in care se ajunge la rezultat.

1+

H+2

Figura 14.7 Procesul de rotire simpla la dreapta

Metoda clasei AVLArbore ce implementeaza aceasta rotatie simpla
primeste ca parametru referinta la nodul pivot.

void AVLArbore::RotatieSimplaDreapta(AVLNod * &pivot)

{
AVLNod *FiuStanga = pivot->st;
pivot->st = FiuStanga->dr;
FiuStanga->dr = pivot;

pivot->Echilibru = 0;
FiuStanga->Echilibru = 0;

pivot = FiuStanga;

Aplicand aceasta metoda arborelui analizat, rezulta structura
arborescenta din figura 14.8.

Figura 14.8 Arbore AVL reechilibrat

Daca prin inserarea sau stergerea unui nod se ajunge in situatia din
figura 14.9, reechilibrarea arborelui se realizeaza printr-o rotire simpla la
stanga.

Figura 14.9 Arbore AVL dezechilibrat

In aceasta situatie, pivotul este dat de nodul cu valoarea 23, acesta
fiind puternic dezechilibrat la dreapta, GE = 2. Deoarece nodul fiu dreapta,
este dezechilibrat slab pe aceeasi directie, reechilibrarea se realizeaza prin
operatia de rotire simpla la stanga.

NOD FIU PE
DIRECTIA
EZECHILIBRULUI

Epivot

——————————

EY - Subarbore stang
fiu stinga pivot
1

Figura 14.10 Procesul de rotire simpla la stdnga

Asemanator operatiei de rotatie simpla la dreapta, cele doua noduri
afectate direct de reorganizarea legaturilor, nodul pivot si fiul acestuia din
dreapta, au in final grade de echilibru egale cu valoarea zero. Reorganizarea
celor doua legaturi evidentiate in figura 14.10 are ca efect reducerea cu o
unitate a inaltimii subarborelui drept al nodului pivot si cresterea cu o
unitate a subarborelui stang.

Metoda ce implementeaza aceasta operatie, RotatieSimplaStanga, are
ca parametru de intrare referinta nodului pivot.

void AVLArbore::RotatieSimplaStanga(AVLNod * &pivot)

AVLNod *FiuDreapta = pivot->dr;
pivot->dr = FiuDreapta->st;
FiuDreapta->st = pivot;

pivot->Echilibru = 0;
FiuDreapta->Echilibru = 0O;

pivot = FiuDreapta;

Aplicand aceasta operatie arborelui din figura 14.10 se obtine
arborele AVL:

Figura 14.11 Arbore AVL reechilibrat

In cazul operatiile de rotire duble, situatia initiald este caracterizat
de sensuri opuse de dezechilibru pentru nodul pivot si pentru nodul sau fiu
de pe directia dezechilibrului. Pentru a exemplifica o astfel de situatie se
insereaza in arborele AVL din figura 14.11, elementele cu valorile 16, 24,
26. Structura arborescenta obtinuta este:

Figura 14.12 Arbore AVL dezechilibrat

Structura arborescenta din figura 14.12 nu este arbore AVL deoarece
exista noduri pentru care gradul de echilibru, GE, are valori in multimea
{-2, +2}. Situatia este generata de inserarea nodului cu valoarea 26, iar
analiza drumului de la acest nod inapoi catre nodul radacina conduce la

identificarea pivotului, nodul cu valoarea 27. Se observa ca, acest nod este
puternic dezechilibrat la stanga, iar nodul fiu de pe aceasta directie, nodul
23, este dezechilibrat slab pe directia opusa. Solutia pentru aceasta
problema necesita o abordare diferita de cele doua tipuri de rotiri simple
descrise, deoarece acestea nu conduc la reechilibrarea arborelui. Pentru a
exemplifica aceasta abordare gresita se simuleaza o rotire simpla la dreapta
aplicata pivotului. Rezultatul obtinut este:

Figura 14.13 Arbore AVL dezechilibrat

Se observa ca arborele, figura 14.13, este in continuare dezechilibrat,
numai cd de data aceasta, dezechilibrul este in sens opus. Incercarea
reechilibrarii, tot cu o rotire simpla, dar in sens opus, va conduce la
obtinerea ipotezei initiale, descrisa in figura 14.12.

Solutia eficienta a acestui tip de dezechilibru este data de aplicarea
unei rotiri duble, ce consta in aplicarea a doua rotiri simple. Scopul primei
rotiri este de a rearanja structura arborescenta astfel incat directiile
dezechilibrului nodului pivot si a fiului acestuia sa aiba acelasi sens. Cea de-
a doua rotire are ca obiectiv reechilibrarea arborelui. Pe baza acestor
motive, cele doua rotatii sunt aplicate unor noduri diferite. Prima rotatie se
aplica nodului fiu al nodului pivot, nod ce se gaseste pe directia
dezechilibrului. Sensul acestei prime rotiri este identic cu directia
dezechilibrului. A doua rotire simpla se aplica nodului pivot si are sens opus
dezechilibrului.

Pentru structura arborescenta din figura 14.12, pivotul este dat de
nodul cu valoarea 27 si acesta este puternic dezechilibrat la stdnga. Pentru
a reechilibra arborele se parcurg urmatoarele etape:

- se analizeaza nodul fiu al nodului pivot pe directia dezechilibrului;

acest nod are valoarea 23 si este slab dezechilibrat la dreapta;

- deoarece pivotul si nodul fiu sunt dezechilibrate pe directii
diferite, reechilibrarea se realizeaza printr-o dubla rotatie;

- prima rotatie se aplica nodului fiu si are sens identic cu
dezechilibrul nodului pivot; se observa ca aceasta operatie
intermediara, figura 14.12.a, redefineste situatia aducand-o intr-o
forma specifica cazurilor in care se aplica rotatii simple;

- a doua rotatie se aplica nodului pivot si are sens opus
dezechilibrului.

GE=-2

NOD PIVOT

GE =-2
NOD PIVOT

GE=0

A) ROTATIE SIMPLA LA STANGA

C) ARBORE REECHILIBRAT

Figura 14.14 Rotatia dubla la dreapta

Din analiza dublei rotatii la dreapta sunt evidentiate 3 elemente
importante, in functie de care sunt reinitializate o serie de legaturi:
- nodul pivot, puternic dezechilibrat la stanga, GE = -2;
- fiul stanga la pivotului, FiuStanga ,ce este slab dezechilibrat la
dreapta, GE = 1;

- fiul dreapta al nodului FiuStanga, notat cu FiuStanga_FiuDreapta;
in functie de situatie, acest nod prezinta un grad de echilibru ce ia
valori in multimea {-1, 0, 1}.

Pentru a determina gradul de echilibru final al nodurilor afectate de
dubla rotatie, se analizeaza modul in care se distribuie inaltimea
subarborilor in urma rotatiilor. Tabelul 14.1 descrie situatiile initiale si
rezultatele la care se ajunge in urma reechilibrarii.

Tabelul nr. 14.1 Rezultatul operatiei de dubla rotatie la dreapta

Situatie initiala Situatie finala
Pivot | FiuStanga FiuStanga_FiuDreapta Pivot | FiuStanga FiuStanga_FiuDreapta
-2 +1 -1 1 0 0
-2 +1 0 0 0 0
-2 +1 +1 0 -1 0

Situatia descrisa in tabelul anterior este utilizata pentru a defini mai eficient
metoda care implementeaza acest tip de rotatie. Astfel este evitat efortul
suplimentar de a recalcula gradul de echilibru pentru cele trei noduri
afectate.

Clasa AVLArbore implementeaza aceasta operatie prin intermediul
metodei RotatieDublaDreapta ce primeste ca parametrul referinta nodului
pivot.

void AVLArbore::RotatieDublaDreapta(AVLNod * &pivot)
{
AVLNod *FiuStanga, *FiuStanga_FiuDreapta;
FiuStanga = pivot->st;
FiuStanga FiuDreapta = FiuStanga->dr;

//realizare rotatie 1 - simpla stanga
FiuStanga->dr = FiuStanga FiuDreapta->st;
FiuStanga FiuDreapta->st = FiuStanga;

//realizare rotatie 2 - simpla dreapta
pivot->st = FiuStanga_ FiuDreapta->dr;
FiuStanga FiuDreapta->dr = pivot;

//modificare grade de echilibru
if(FiuStanga FiuDreapta->Echilibru == 1)
{

pivot->Echilibru = 0;

FiuStanga->Echilibru = -1;

else
if(FiuStanga FiuDreapta->Echilibru == 0)

pivot->Echilibru = 0;
FiuStanga->Echilibru = 0;

else
pivot->Echilibru = 1;
FiuStanga->Echilibru = 0;

}
FiuStanga FiuDreapta->Echilibru=0;

pivot = FiuStanga_ FiuDreapta;

Structura arborescenta este modificata prin stergerea nodului cu
valoarea 16 si prin addaugarea unei noi valori, 25. Arborele obtinut, descris
in figura 14.15, inceteaza sa mai fie AVL in urma aplicarii ultimei modificari.

Figura 14.15 Arbore AVL dezechilibrat

Se observa ca exista doua noduri, cu valoarea 24 si 10, ce descriu
dezechilibre puternice, GE = 2, la dreapta. Analizand, de jos in sus, drumul
de la noul nod inserat la radacina arborelui, se stabileste ca fiind pivot nodul
cu valoarea 24. In mod asemandtor cu situatia descrisd anterior, fiul
pivotului de pe directia dezechilibrului este dezechilibrat usor in sens opus.
Tentativa de a rezolva situatia prin intermediul unei rotatii simple nu
conduce la solutionarea problemei reechilibrarii deoarece are ca rezultat
mutarea dezechilibrului pe partea stanga.

Avand in vedere conditiile de lucru, reechilibrarea arborelui din figura
14.15 presupune:

- aplicarea unei rotatii simple la dreapta in nodul fiu al pivotului;
daca pivotul are ambii fii atunci rotatia se face in toate situatiile
asupra nodului fiu de pe directia dezechilibrului; deoarece pivotul
este dezechilibrat puternic la dreapta, nodul fiu selecta este 27;

- aplicarea unei rotatii simple la stdnga, in sens opus
dezechilibrului, in nodul pivot.

A) ROTATIE SIMPLA LA DREAPTA

C) ARBORE REECHILIBRAT

Figura 14.16 Rotatia dubla la stdnga

Pentru a implementa o solutie software care sa gestioneze datele prin
intermediul unui arbore binar de cautare echilibrat de tip AVL, trebuie sa fie
dezvoltate rutine complementare operatiilor de inserare si stergere in arbori
binari de cautare care sa reechilibreze structura arborescenta aflata in una
din cele patru situatii descrise.

Tabelul 14.2 sintetizeaza situatiile de dezechilibru si modul in care
arborele AVL este mentinut in urma operatiilor de inserare.

Tabelul nr. 14.2 Situatii dezechilibru arbori AVL

Grad Nod fiu Grad Rotire
echilibru nod analizat echilibru
pivot nod fiu
+2 dreapta +1 Simpla la stanga
+2 dreapta -1 Dubla la stédnga: rotire simpla la

dreapta in fiul din dreapta al pivotului;
rotire simpla la stanga in pivot.

-2 stanga -1 Simpla la dreapta

-2 stanga +1 Dubla la dreapta: rotire simpla la
stanga in fiul din stanga al pivotului;
rotire simpla la dreapta in pivot.

Dezvoltarea de aplicatii care implementeaza lucrul cu arbori de tip
AVL se bazeaza pe dezvoltarea unei biblioteci de cod in care sunt definite
clasele AVLNod si AVLArbore. Clasa AVLNod descrie atributele si metodele
unui obiect ce reprezinta nodul unui arbore binar de cautare echilibrat.

class AVLNod

{

private:
int Echilibru;
int Info;
AVLNod *st;
AVLNod *dr;

public:

//constructorii clasei

AVLNod(void);

AVLNod(int echilibru, int info, AVLNod * stanga, AVLNod *
dreapta);

//destructorul clasei

virtual ~AVLNod(void);

//interfata pentru atributul Echilibru
int GetEchilibru(void){return this->Echilibru;};

// acces la atributele private din clasa AVLArbore
friend class AVLArbore;

//acces la atributele private din clasa AVLNodeStack
friend class AVLNodeStack;

In comparatie cu nodul unui arbore binar de cdutare, aceastd clas3
defineste o proprietate noua, Echilibru, utilizata pentru a gestiona gradul de
echilibru asociat fiecarui nod. Atributele Info, st si dr sunt utilizate pentru a
memora valoarea nodului curent si pentru a face legatura intre nodul
parinte si nodul fiu stdnga, respectiv, dreapta.

Cele doua metode constructor

AVLNod: : AVLNod(void)
{
Echilibru = 0O;
Info = 0;
st NULL;
dr NULL;

}
AVLNod: :AVLNod(int echilibru, int info, AVLNod * stanga, AVLNod *
dreapta)

Echilibru = echilibru;
Info = info;
st stanga;
dr = dreapta;

by

permit programatorilor crearea si initializarea unui nod al arborelui cu valori
implicite sau pe baza unor parametrii de intrare.

Clasa AVLArbore defineste atributele si metodele unui obiect de tip
arbore AVL. Acesta gestioneaza structura dinamica de elemente prin
intermediul referintei catre nodul radacina, radacina.

class AVLArbore

{
public:
AVLNod *radacina;
public:
//constructorul clasei
AVLArbore(void);
//constructorul de copiere al clasei
AVLArbore(const AVLArbore & arbore);
//destructorul clasei
virtual ~AVLArbore(void);
//operatorul =
AVLArbore operator = (AVLArbore & arbore);
//metodele clasei pentru inserare/stergere nod
void Insert(const int info);
void Delete(const int info);
//metoda pentru afisarea arborelui
static void AfisareArbore(AVLNod * rad);
//metoda pentru stergerea arborelui
void StergereArbore(AVLNod * &rad);
private:

void AVLInsert(AVLNod* &arbore,AVLNod * nodNou, int &
echilibruNou);

void AVLDelete(AVLNod* &arbore,const int Info,AVLNodeStack
&stiva);

//rotatii simple utilizate la inserare
void RotatieSimplaDreapta(AVLNod * &pivot);
void RotatieSimplaStanga(AVLNod * &pivot);

//rotatii simple utilizate la stergere
void RotatieSimplaDreaptaStergere(AVLNod * &pivot);
void RotatieSimplaStangaStergere(AVLNod * &pivot);

void RotatieDublaDreapta(AVLNod * &pivot);
void RotatieDublaStanga(AVLNod * &pivot);

//metodele clasei pentru reechilibrarea arborelui

void ReechilibrareSubarboreStang(AVLNod * &pivot, int
&echilibruNou);

void ReechilibrareSubarboreDrept(AVLNod * &pivot, int
&echilibruNou);

//metoda utilizata pentru copierea arborelui
void CopiereArbore(AVLArbore &arboreNou, AVLNod * rad);

//metoda inserare a unui arbore binar de cautare
AVLNod * Inserare(AVLNod *rad, const int Valoare, int echilibru

static int Stergere(AVLNod*& Subarbore, AVLNodeStack &stiva);

//metoda pentru determinarea inaltimii unui arbore
int inaltime(AVLNod * radacina);

//metoda ce determina maximul dintre doua valori
int max(int a, int b){return a < b? b :© a;}

//metoda ce determina gradul de echilibru al nodului
int Calculeazatkchilibru(AVLNod *& radacina);

//metoda recalculeaza gradul de echilibru pentru toate nodurile
void RecalculeazaEchilibrul (AVLNod *&rad);

O atentie deosebita se acorda formei data de programator a
constructorului de copiere si a operatorului =. Necesitatea este data de
existenta atributului dinamic AVLNod *radacina si de efectele negative pe
care le au formele implicite ale acestor doua metode asupra programului.
Programatorul trebuie sa se asigure ca in situatiile in care aceste doua
metode sunt apelate se vor crea structuri noi cu valori egale si nu se vor
face doar simple initializari de referinte catre aceeasi zona de memorie.

Copierea arborelui presupune parcurgerea structurii existente, cu
pastrarea caracteristicilor acesteia. Din acest motiv, cele doud metode se
bazeaza pe o parcurgere in preordine a arborelui existent, completata de
inserarea nodului curent in structura nou creata. Spre deosebire de
parcurgere in inordine si postordine, parcurgere in preordine asigura
crearea unui nou arbore binar de cdutare identic cu structura sursa si cu
minim de efort.

Se considera structura arborescenta din figura 14.17 pentru care se
obtin sirurile valorilor elementelor, parcurgand arborele prin cele trei
metode cunoscute.

Preordine: 10, 3, 2, 23, 18, 27
Inordine: 2, 3, 10, 18, 23, 27
Postordine: 2, 3, 18, 27, 23, 10

Figura 14.17 Structura arborescenta de tip AVL

Prin inserarea valorilor intr-o noua structura arborescenta, pe masura
ce acestea sunt accesate si analizate, se obtin cei trei arbori binari de
cautare din figura 14.18.

A) Arbore obtinut in urma
parcurgerii in preordine

C) Arbore obtinut in urma
parcurgerii in postordine

B) Arbore obtinut in urma
parcurgerii in inordine

Figura 14.18 Structuri arborescente binare

Se observa ca, dintre cele trei metode de parcurgere a unui arbore
binar, cea mai potrivita pentru operatia de copiere este abordarea in
preordine. Celelalte doua metode necesita un efort suplimentar de
rearanjare a nodurilor si nu asigura obtinerea unei arbore identic cu sursa.
Din punct de vedere al reechilibrarii, efortul este mult mai mare datorita
prelucrarilor suplimentare.

Metoda CopiereArbore construieste copia arborelui radArboreVechi
parcurgand-ul in preordine.

void AVLArbore::CopiereArbore(AVLArbore &arboreNou, AVLNod
*radArboreVechi)

{
if(radArboreVechi 1=NULL)

{
arboreNou.radacina =
arboreNou. Inserare(arboreNou.radacina, radArboreVechi->Info,
radArboreVechi->Echilibru);
CopiereArbore(arboreNou, radArboreVechi->st);
CopiereArbore(arboreNou, radArboreVechi->dr);

Metoda anteriord, se bazeaza pe parcurgerea recursiva a arborelui
curent si apeleaza rutina Inserare specifica arborilor binari de vautare
pentru a insera o valoare intr-o noua structura arborescenta gestionata prin
pointerul arboreNou.

AVLNod * AVLArbore::Inserare(AVLNod *rad, const int Valoare, int
echilibru)

{
if(rad == NULL)
{
rad = new AVLNod(echilibru,Valoare, NULL, NULL);
}
else

if(rad->Info<Vvaloare)
rad->dr = Inserare(rad->dr,Valoare,echilibru);

else
if(rad->Info>Valoare)
rad->st = Inserare(rad->st,Valoare,echilibru);
return rad;

Formele explicite ale constructorului de copiere si a operatorului de
egal implementeaza rutina de copiere a unui arbore pentru a genera noi
structuri arborescente cu valori identice.

AVLArbore: :AVLArbore(const AVLArbore &arbore)

this->radacina = NULL;
CopiereArbore((*this),arbore.radacina);

Spre deosebire de constructorul de copiere, operatorul = presupune
stergerea arborelui existent si recrearea acestuia prin copierea valorilor
structurii arbore.

AVLArbore AVLArbore::operator = (AVLArbore & arbore)

{
StergereArbore(this->radacina);
CopiereArbore((*this),arbore.radacina);
return *this;

}

Metoda utilizata pentru stergerea arborelui AVL este data de operatia
specifica structurilor arborescente binare, ce realizeaza eliberarea memoriei
de jos in sus, pornind cu nodurile frunza.

void AVLArbore::StergereArbore(AVLNod * &rad){
if(rad!=NULL){
StergereArbore(rad->st);
StergereArbore(rad->dr);
delete rad;
rad = NULL;

Operatia de inserare in arborii AVL este derivata din metoda specifica
arborilor binari de cautare. Operatiile suplimentare sunt necesare procesului
de reechilibrare si de conservare a caracteristicii acestui tip de structura,
mentinerea gradului de echilibru in multimea {-1; 0; 1} pentru toate
nodurile arborelui.

Metoda AVLInsert parcurge o serie de etape necesare inserarii unui
nou nod, nodNou, intr-un arbore de tip AVL, gestionat prin intermediul
pointerului arbore:

- daca arborele este vid, noul nod devine radacina arborelui AVL;

- daca arborele exista, se cauta pozitia noului nod prin parcurgerea
acestuia asemenea unui arbore binar de cautare; parcurgerea
este recursiva, accesandu-se nodul fiu stanga sau dreapta functie
de rezultatul compararii valorii nodului nou cu valoarea nodului
curent;

- se recalculeaza gradul de echilibru pentru toate nodurile parcurse;
fiind un proces recursiv, revenirea din apelul rutinei asigura
pozitionarea pe nodul anterior; variabilele echilibruNou si
Reechilibrare indica faptul ca a avut loc o modificare de structura
in apelul anterior, lucru care poate conduce la dezechilibre; in
cazul in care aceste variabile sunt initializate cu valoare 1, este
testat gradul de echilibru al nodului curent;

void AVLArbore::AVLInsert(AVLNod* &arbore,AVLNod * nodNou, int &
echilibruNou){

int Reechilibrare;

if(arbore == NULL){
arbore = nodNou;
arbore->Echilibru = 0;
echilibruNou = 1;
}
else
if(nodNou->Info<arbore->Info){
AVLInsert(arbore->st,nodNou,Reechilibrare);
if(Reechilibrare){
if(arbore->Echilibru == -1)

ReechilibrareSubarboreStang(arbore,echilibruNou);

else
if(arbore->Echilibru == 0){
arbore->Echilibru = -1;
echilibruNou = 1;
3
else{
arbore->Echilibru = 0;
echilibruNou = 0;
3
3
else
echilibruNou = 0;
3
else{

if(nodNou->Info>arbore->Info){
AVLInsert(arbore->dr, nodNou, Reechilibrare);
if(Reechilibrare){
if(arbore->Echilibru == -1){
arbore->Echilibru = 0;
echilibruNou = 0;

else
if(arbore->Echilibru == 0){
arbore->Echilibru = 1;
echilibruNou = 1;

}

else
ReechilibrareSubarboreDrept(arbore,echilibruNou);

else
echilibruNou = 0;
b
else
echilibruNou = O;

- identificarea nodului dezechilibrat, pivotul operatiilor de rotire,
este realizata doar daca variabila Reechilibrare este setata, prin
verificarea elementelor vizitate;

- daca nodul curent are gradul de echilibru egal cu -1 iar nodul nou
a fost inserat in subarborele stang, are loc reechilibrarea acestuia
prin apelul metodei ReechilibrareSubarboreStang;

- daca nodul curent are gradul de echilibru egal cu 0 sau +1 iar
nodul nou a fost inserat in subarborele stang, atunci noul grad de
echilibru al elementului curent este -1, respectiv 0; prin
initializarea variabilei echilibruNou cu valoare 1 se continua
verificarea dezechilibrului la nodurile superioare; daca nodul
curent devine perfect echilibrat, se opreste verificarea in acest
punct, iar echilibruNou ia valoarea 0;

- daca nodul curent are gradul de echilibru egal cu +1 iar nodul nou
a fost inserat in subarborele drept, are loc reechilibrarea acestuia
prin apelul metodei ReechilibrareSubarboreDrept;

- daca nodul curent are gradul de echilibru egal cu 0 sau -1 iar
nodul nou a fost inserat in subarborele drept, atunci noul grad de
echilibru al elementului curent este +1, respectiv 0; asemenea
situatiei anterioare, variabila echilibruNou conditioneaza prin
valorile ei continuarea sau incetarea procesului de cautare;

- metoda ReechilibrareSubarboreStang ia in considerare toate
situatiile posibile de dezechilibru catre stéanga si in functie de tipul
acesteia reechilibreaza subarborele cu radacina in nodul pivot prin
rotatie simpla la dreapta, metoda RotatieSimplaDreapta, sau prin
rotatie dubla la dreapta, metoda RotatieDublaDreapta; se observa
caracterul general al acestei metode de reechilibrare ce este
utilizata si la stergerea unui nod, procesul fiind descris in
continuare;

void AVLArbore::ReechilibrareSubarboreStang(AVLNod * é&pivot, int
&echilibruNou){
AVLNod * FiuStanga = pivot->st;

if(FiuStanga->Echilibru == -1){
RotatieSimplaDreapta(pivot);
echilibruNou = 0;

else
if(FiuStanga->Echilibru == 1){
RotatieDublaDreapta(pivot);
echilibruNou = 0;

else
//situatie specifica operatiei de stergere
if(FiuStanga->Echilibru == 0){
RotatieSimplaDreaptaStergere(pivot);
echilibruNou = 0;

- metoda ReechilibrareSubarboreDrept analizeaza cazurile de
dezechilibru la dreapta, reechilibrand pivotul prin una din cele
doua tehnici de rotatie la stanga;

void AVLArbore::ReechilibrareSubarboreDrept(AVLNod * &pivot, int
&echilibruNou){
AVLNod * FiuDreapta = pivot->dr;

iTf(FiuDreapta->Echilibru == 1){
RotatieSimplaStanga(pivot);
echilibruNou = 0;

else
if(FiuDreapta->Echilibru == -1){
RotatieDublaStanga(pivot);
echilibruNou = 0;

else
//situatie specifica operatiei de stergere
if(FiuDreapta->Echilibru == 0){
RotatieSimplaStangaStergere(pivot);
echilibruNou = 0;

Metoda AVLInsert este o metoda interna clasei. Aceasta este epelata
din programul principal de catre metoda publica Insert ce primeste ca
parametru valoarea de inserat in arborele AVL.

void AVLArbore::Insert(const int info)

{ AVLNod* RadacinaArbore = this->radacina;
AVLNod* NodNou = new AVLNod(O, info,NULL,NULL);
int EchilibruNou = O;
AVLInsert(RadacinaArbore,NodNou,EchilibruNou);
Y this->radacina = RadacinaArbore;

Spre deosebire de operatie de inserare, care necesita maxim o
singura rotatie pentru remedierea dezechilibrului, in cazul procedurii de
stergere a unui nod sunt necesare mai multe operatii de rotatie pentru a
reechilibra arborele AVL si pentru a conserva caracteristicile acestuia.
Etapele parcurse se concentreaza pe analiza tuturor nodurilor direct
influentate

- se identifica nodul de sters pe baza caracteristicilor arborilor
binari de cautare;

- pe masura ce se parcurge arborele, nodurile vizitate sunt salvate
intr-o structura de tip stiva; aceasta operatie suplimentara este
necesara pentru a permite reconstruirea in sens invers a drumului
parcurs de la radacina arborelui;

struct NodeStack

AVLNod* Nod;
NodeStack *next;

¥
class AVLNodeStack
{
private:
NodeStack * VarfStiva;
public:
AVLNodeStack()
{
VarfStiva=NULL;
3
void PUSHCAVLNod* &NodNou){
NodeStack *elementNou= new NodeStack;
elementNou->Nod = NodNou;
if(this->VarfStiva==NULL){
this->VarfStiva = elementNou;
elementNou->next=NULL;
3
else
{
elementNou->next = this->VarfStiva;
this->VarfStiva = elementNou;
3
3
AVLNod* POP(){
if(this->VarfStiva==NULL)
return NULL;
else
{
NodeStack *elementSters = this->VarfStiva;
AVLNod* NodAuxiliar = this->VarfStiva->Nod;
this->VarfStiva = this->VarfStiva->next;
delete elementSters;
return NodAuxiliar;
}
void AfiseazaStiva()
{
NodeStack *temp = this->VarfStiva;
while(temp!=NULL)
{
printf("\n Nod in stiva este %d",temp->Nod->Info);
temp=temp->next;
}
3
3

- nodul se sterge in mod asemanator cu operatia asociata arborilor
binari de cautare; daca nodul este frunza se sterge efectiv; daca
nodul are un singur fiu, acesta il inlocuieste in structura; daca
nodul are cei doi fii, este inlocuit de nodul cu valoarea cea mai
mare din subarborele drept, metoda Stergere;

int AVLArbore::Stergere(AVLNod*& SubarboreDrept, AVLNodeStack é&stiva)

{
if(SubarboreDrept->st)
{
stiva.PUSH(SubarboreDrept);
return AVLArbore: :Stergere(SubarboreDrept->st,stiva);
}
else
{
AVLNod * NodSters= SubarboreDrept;
int valoare = SubarboreDrept->Info;
SubarboreDrept = SubarboreDrept->dr;
delete NodSters;
return valoare;
}
}

sunt analizate toate nodurile parcurse si sunt reechilibrate
situatiile de dezechilibru luand in calcul ipotezele de aplicare a
celor patru tipuri de rotatii; operatia de stergere se incheie in
momentul in care sunt verificate toate locatiile de dezechilibru
posibil; pentru abordarea aleasa ca solutie in acest capitol,
operatia se considera incheiata in momentul in care stiva este
golita;

din analiza metodei Stergere, se observa ca in etapa de
identificare a nodului cu valoarea ce mai mare din subarborele
drept, ce va lua locul nodului de sters, este completata de
salvarea in stiva utilizatd a nodurilor vizitate; necesitatea acestei
operatii suplimentare este data de faptul ca stergerea unui nod
poate conduce la dezechilibrarea nodurilor superioare aflate pe
drumul de la radacina la pozitia lui; de asemenea, reechilibrarea
unui nod parinte poate conduce la generarea unei alte situatii de
dezechilibru; pentru a exemplifica aceasta situatie, se ia 1in
considerare arborele AVL din figura 14.19 in care se sterge nodul
cu valoarea 50;

Figura 14.19 Structura arborescenta de tip AVL

Prin stergerea nodului cu valoarea 50, se obtine stiva cu valorile 47 si
35. Din analiza acestor noduri, se observa ca arborele AVL, descris in figura
14.20, devine dezechilibrat in nodul cu valoarea 47.

Figura 14.20 Structura arborescenta de tip AVL dezechilibrata

Prin reechilibrare, aplicand o rotatie simpla la dreapta in pivot, se
obtine o noua situatie de dezechilibru in urmatoare valoare din stiva, 35,
figura 14.20. Printr-o rotatie simpla la dreapta in nodul cu valoarea 35
considerat pivot, arborele AVL este reechilibrat. Deoarece stiva a fost golita,
operatie de stergere se considera incheiata, figura 14.21.

Figura 14.21 Structura arborescenta de tip AVL

Exista cazuri in care prin stergerea unui nod, se ajunge la situatii de
dezechilibru diferite de ipotezele analizate la operatia de inserare. Luand in
considerare arborele AVL din figura 14.22, se propune stergerea nodului cu
valoarea 16.

GE =0 GE =0 GE =0 GE =0 GE =0

Figura 14.22 Stergere din structura arborescenta de tip AVL

Situatia difera de cele intalnite la inserare prin faptul ca in acest
dezechilibru pivotul are un grad de echilibru egal cu +2, iar nodul fiu de pe
directia dezechilibrului are un echilibru egal cu 0. Solutia acestui
dezechilibru este dat de o rotatie simpla in pivot la stanga.

Din acest motiv, metodele clasei AVLArbore, destinate analizei si
implementarii tipului de rotatie potrivit, sunt modificate in cazul operatiei de
stergere. Cele doua metode descrise anterior , ReechilibrareSubarboreDrept
si ReechilibrareSubarboreStang analizeaza si situatiile particulare in care
nodul de pe directia dezechilibrului are gradul de echilibru egal cu zero, caz
in care sunt apelate metodele RotatieSimplaDreaptaStergere si
RotatieSimplaStangaStergere.

void AVLArbore::RotatieSimplaDreaptaStergere(AVLNod * &pivot)

{
AVLNod *FiuStanga = pivot->st;
pivot->st = FiuStanga->dr;
FiuStanga->dr = pivot;

pivot->Echilibru += 1;
FiuStanga->Echilibru += 1;

pivot = FiuStanga;
}

void AVLArbore::RotatieSimplaStangaStergere(AVLNod * &pivot)

{
AVLNod *FiuDreapta = pivot->dr;
pivot->dr = FiuDreapta->st;
FiuDreapta->st = pivot;

pivot->Echilibru -=1;
FiuDreapta->Echilibru -= 1;

pivot = FiuDreapta;

Pentru a implementa operatia de stergere, se defineste in clasa
AVLArbore metoda Delete.

void AVLArbore::Delete(const int Info)
{

int valTemp;

//definesc stiva nodurilor parcurse
AVLNodeStack stiva;

//se sterge nodul
AVLDelete(this->radacina, Info,stiva);

//se analizeaza nodurile parcurse
AVLNod *temp = stiva.POP();
while(temp!=NULL){
temp->Echilibru = this->CalculeazaEchilibru(temp);
if(temp->Echilibru==2){
AVLNod *parinte = stiva.POP();
if(parinte!=NULL){
if(parinte->dr==temp)
this->ReechilibrareSubarboreDrept(parinte->dr,valTemp);
else
this->ReechilibrareSubarboreDrept(parinte->st,valTemp);
parinte->Echilibru=this->CalculeazaEchilibru(parinte);

}
b

else
if(temp->Echilibru==-2){
AVLNod *parinte = stiva.POP();
if(parinte!=NULL){
if(parinte->dr==temp)
this->ReechilibrareSubarboreStang(parinte->dr,valTemp);
else
this->ReechilibrareSubarboreStang(parinte->st,valTemp);
parinte->Echilibru=this->CalculeazaEchilibru(parinte);
}
}
temp=stiva.POP();

Aceasta metoda se bazeaza pe apelul metodei AVLDelete pentru a
realiza stergerea efectiva a nodului dorit, secventa de cod asociata fiind
concentrata pe analiza nodurilor din stiva. Pentru fiecare din acestea, se
recalculeaza gradul de echilibru prin intermediul metodei
CalculeazaEchilibru.

int AVLArbore::CalculeazaEchilibru(AVLNod *& radacina)
{

3

return inaltime(radacina->dr) - inaltime(radacina->st);

Metoda AVLDelete completeaza metoda intalnita la stergerea
nodurilor din arbori binari de cautare prin gestiunea unei stive in care sunt
inserate toate valorile intalnite.

void AVLArbore::AVLDelete(AVLNod* &arbore,const int Info,AVLNodeStack
&stiva){
AVLNod *NodAuxiliar;
if(arbore){
if(Info == arbore->Info){
NodAuxiliar = arbore;
if(!NodAuxiliar->dr){
arbore = NodAuxiliar->st;
delete NodAuxiliar;

else
if('NodAuxiliar->st){
arbore = NodAuxiliar->dr;
delete NodAuxiliar;

else{
stiva.PUSH(arbore);
arbore->Info = AVLArbore: :Stergere(arbore->dr,stiva);
}
}
else
if(Info < arbore->Info){
stiva.PUSH(arbore);
AVLDelete(arbore->st, Info,stiva);
}
else{
stiva.PUSH(arbore);
AVLDelete(arbore->dr, Info,stiva);

33

In ciuda efortului asociat implementarii si executdrii secventelor de rotire
ale structurii, arborii AVL ofera un ridicat nivel de eficienta in ceea ce
priveste procesul de cautare in arbori binari de cautare. Structura
arborescenta echilibrata

14.4 Caracteristici ale arborilor Rosu & Negru

Arborii Rosu & Negru reprezinta o alta tipologie de arbori binari de
cautare echilibrati, fiind prima data definiti de Rudolf Bayer in 1972 sub
forma de arbori simetrici. Asemenea arborilor AVL, aceasta structura este
caracterizata de o complexitate a operatiei de cautare egala cu O(log n), n
fiind numarul de noduri din arbore, datorita modului in care nodurile sunt
plasate in mod simetric in subarborii stdngi sau drepti.

Spre deosebire de arborele AVL, in care principala caracteristica se
determina pe baza gradului de echilibru al fiecarui nod, in structurile
arborescente de tip Rosu & Negru, factorul cel mai important este dat de
culoarea fiecarui nod:

- fiecare nod are una dintre cele doua culori, rosu sau negru;

- nodul radacina este intotdeauna negru;

- ambele noduri fiu ale unui nod parinte rosu sunt negre; un nod

rosu nu poate avea ca parinte decat un nod negru;

- toate drumurile de la radacina la oricare din nodurile frunza contin
acelasi numar de noduri negre.

Analizand aceste caracteristici sunt derivate proprietati noi care sa fie
utilizate in implementarea algoritmilor sau care sa evidentieze eficienta
acestui tip de structura fata de un arbore binar de cautare:

- in arborele Rosu & Negru nu exista pe un drum doua noduri
adiacente de culoare rosie deoarece orice nod rosu are ambii fii
de culoare neagra;

- daca se considera ca cel mai scurt drum din arbore are numai
noduri negre in numar de k, atunci cel mai lung drum din arbore
are maxim dublu noduri, 2 * k; ipoteza este demonstrata pe baza
faptului ca toate drumurile din acest tip de structura au acelasi
numar de noduri negre, fapt care conduce la concluzia ca drumul
cel mai lung poate fi format doar din perechi de noduri adiacente
de culori opuse, figura 14.23.

Figura 14.23 Structura arborescenta de tip Rosu & Negru

Pentru a facilita implementarea operatiilor cu structuri arborescente
de tip Rosu & Negru se propune o structura asociata nodului, clasa RNNode

class RNNod

{
int Info;
bool Culoare;
RNNod *st;
RNNod *dr;
RNNod *parinte;
3

Elementele de tip RNNode includ pe langa atributele intélnite la toate
structurile arborescente binare:

- informatia util3;

- cele doua legaturi catre nodurile fiu din stanga, respectiv,

dreapta;

si informatia ce descrie culoare nodului, precum si o legatura suplimentara
catre nodul parinte. Aceasta abordare contribuie la implementarea mult mai
facila a operatiilor de inserare sau stergere, minimizand in timp real efortul
de a identifica nodul parinte al nodului curent.

14.5 Operatii pe arbori Rosu & Negru

Operatiile pe arborii Rosu si Negru descrise, inserare si stergere, sunt
realizate asemenea arborilor binari de cautare deoarece acest tip de arbore
este o structura binara particulara. Asigurarea caracteristicilor specifice
acestui tip de structura arborescenta este realizata printr-o serie de operatii
auxiliare si complementare procesului de inserare sau stergere ce constau in
rotiri sau modificari de culoare.

Pentru a descrie metodele specifice operatiilor se defineste ca nod
bunic al nodului nou creat, nodul ce se gaseste pe al doilea nivel superior
fata de nodul analizat, figura 14.24. Se defineste ca nod unchi al nodului
analizat, al doilea nod fiu al nodului bunic.

nod bunic

nod unchi

nod parinte

nod analizat

Figura 14.24 Relatii intre noduri Rosu & Negru

Pentru a determina pozitia acestor noduri particulare este utilizat
atributul RNNod *parinte al fiecarui obiect de tip RNNod. De exemplu nodul
bunic al nodului curent este determinat prin expresia NodCurent->parinte-
>parinte, iar nodul unchi este dat de NodCurent->parinte->parinte->st sau
NodCurent->parinte->parinte->st in functie de pozitia acestuia relativa la
nodul parinte al nodului curent.

Operatia de inserare este analizata prin prisma cazurilor particulare.
Acestea sunt definite de contextul in care se gaseste nodul nou creat si de
situatiile de dezechilibru aparute.

Fiecare nod nou creat si inserat in structura arborescenta de tip Rosu
si Negru are culoarea initiala rosie. Astfel se incearca evitarea situatie in
care este incdlcata proprietatea ca toate drumurile din arbore au acelasi
numar de noduri negre.

Se considera arborele Rosu & Negru vid in care se insereaza valoarea
43. prin inserare se obtine structura arborescentd din figura 14.25 ce
trebuie reechilibrata prin modificarea culorii nodului radacina in negru.
Astfel nodul radacina este negru.

reechilibrare prin modificare
culoare

o—— > G

nod rosu nod negru

Figura 14.25 Arbore Rosu & Negru cu un singur nod

in arborele analizat se insereazd valorile 25 si 78. Nodurile nou create
au culoare rosie, figura 14.26 si nu este incalcata nici o proprietate a
arborilor.

43

Figura 14.26 Arbore Rosu & Negru echilibrat

Se ia in considerare situatia in care se insereaza nodul cu valoarea
14. Nodul nou creat este rosu, fapt care incalca proprietatile arborilor Rosu
& Negru, deoarece un nod rosu are intotdeauna un nod negru ca parinte.
Daca nodul este recolorat in negru atunci toate drumurile din arbore nu vor
avea acelasi numar de noduri negre. Situatia este analizata prin prisma
nodului parinte si a nodului unchi. Daca aceste doua noduri sunt rosii atunci
ele isi schimba culoarea in negru, iar nodul bunic, parintele celor doua
noduri, devine negru, figura 14.27. Daca prin modificarea culorii nodului
bunic, arborele este dezechilibrat atunci situatia este remediata in maniera
recursiva pana se ajunge la radacina arborelui.

reechilibrare prin modificare

H
H

culoare dezechilibru

H

dezechilibru nod bunic

nod péarinte nod unchi

nod nou

Figura 14.27 Arbore Rosu & Negru reechilibrat

In cazul arborelui din figura 14.27, nodul rdd3cind devine negru la
pasul urmator, structura fiind reechilibrata.

Se considera exemplul dat de inserarea valorii 17. Nodul nou are
culoare rosie, fapt ce incalca proprietatea acestui tip de arbore, toate
nodurile fiu ale unui nod rosu sunt negre, figura 14.28.

nod ?érinte \

{777% nod NULL

G i dezechilibru
nod nou 1

Figura 14.28 Arbore Rosu & Negru dezechilibrat

Reechilibrarea arborelui in aceasta situatie este realizata printr-o
dubla rotatie. Intr-o prima faza, se realizeaza o simpla rotatie la stdnga in
nodul parinte. Ipoteza de lucru este definita de faptul ca:

- nodul parinte are culoare rosie, dar nodul unchi este fie negru, fie

nod NULL;

- nodul nou creat este fiu dreapta pentru nodul parinte, care la

randul sau este nod fiu stanga pentru nodul bunic.

Rotatia este realizata asemenea arborilor AVL considerand pivot,
nodul parinte. Dupa aceastda prima rotatie se obtine arborele din figura
14.29.

nod bunic nod bunic

nod ?irinte ---------- \

.....

i+ nod NULL

nod pirinte nou

idezechilibru

Figura 14.29 Arbore Rosu & Negru dezechilibrat

Structura arborescenta este dezechilibrata prin prisma aceleiasi
proprietati incalcate. Din acest motiv este necesara o a doua operatie de
rotatie ce are ca pivot, nodul bunic. De data aceasta, rotatie se realizeaza la
dreapta, avand sens opus cu directia nodului fiu fata de nodul parinte.
Ipoteza de lucru este definita de conditiile:

- nodul parinte are culoare rosie, dar nodul unchi este fie negru, fie

nod NULL;

- noul nod parinte este fiu stdnga pentru nodul bunic si nodul nou

inserat este fiu stdnga pentru acesta.

Rotatia descrisa in figura 14.30 este insotita si de o recolorare a
nodurilor, astfel incat nodul bunic devine rosu si noul nod parinte devine
negru.

nod bunic

|} nod NULL

Figura 14.30 Arbore Rosu & Negru reechilibrat

In cazul in care, se insera valoarea 10 atunci erau atinse conditiile
implementarii celei de a doua operatie de rotatie fiind evitata prima rotatie
la stanga.

Daca nodul nou are ca parinte un nod de culoare rosie si acesta este
fiul din dreapta al nodului bunic, atunci situatia reprezinta imaginea in
oglinda a cazului anterior.

De exemplu, se insereaza valorile 89 si 95 in aceasta ordine. Figura
14.31 descrie pasii parcursi pentru reechilibrarea arborelui.

43

nod bunic

78 [0 — 17 89
n nod parinte

dezechilibru ;

Figura 14.31 Reechilibrare arbore Rosu & Negru

Situatia descrisa anterior este conditionata de atingerea urmatoarelor
conditii de lucru:

- nodul parinte are culoare rosie, dar nodul unchi este fie negru, fie

nod NULL;

- nodul parinte este fiu dreapta pentru nodul bunic si nodul nou

_inserat este fiu dreapta pentru acesta.

In cazul in care ultima conditie nu este indeplinita, noul nod fiind fiu
stanga, situatia este ajustata prin operatia de rotire la dreapta in nodul
parinte.

Operatia de stergere in arbori Rosu si Negru completeaza procesul
intalnit la arborii binari de cautare prin operatii specifice de recolorare sau
rotire a nodurilor astfel incat sa fie pastrate caracteristicile acestei structuri
arborescente.

In cazul in care nodul de sters are doua noduri fiu atunci acesta este
inlocuit de nodul cu valoarea cea mai mare din subarborele stdng sau de
nodul cu valoarea cea mai mica din subarborele drept. Copierea de valoarea
este insotitd de pastrarea culorii nodului sters astfel incat sa nu fie afectat
arborele. Oricare varianta se alege, nodul care va inlocui nodul de sters este
la randul sau eliminat din structura arborescentda. Acesta este fie nod
frunza, fie are maxim un fiu. De exemplu, se sterge nodul cu valoarea 43
din arborele descris in figura 14.32.

Péastrare
culoare

nod de sters ¢4

inlocuire cu cel mai mic nod
din subarborele drept

Figura 14.32 Stergere nod din arbore Rosu & Negru

Prin prisma exemplului anterior, problemele aparute la stergerea
unui nod dintr-un arbore Rosu si Negru sunt concentrate in cazurile
de stergerea unui nod care are maxim un fiu.

Daca nodul de sters este de culoare rosie, figura 14.30, atunci nodul
sau fiu este de culoare neagra, aceasta fiind o caracteristica a arborilor Rosu
si Negru. Stergerea nodului implica in aceasta situatie inlocuirea sa cu nodul

fiu. Arborele este in continuare Rosu si Negru deoarece stergerea unui nod
rosu nu are implicatii asupra numarului de noduri negre de pe fiecare drum.

inlocuire cu unicul fiu al
nodului de sters

on— >

nod de sters

Figura 14.33 Cazul 1 de stergere nod din arbore Rosu & Negru

Daca nodul sters este de culoare neagra, iar fiul sau este de culoare
rosie, figura 14.34, atunci arborele devine dezechilibrat pe drumul care
trece prin aceasta zona deoarece numarul de noduri negre este mai mic cu
unul. Reechilibrarea structurii arborescente se face in aceasta situatie prin
recolorarea in negru a nodului fiu. Astfel este refacut numarul de noduri
negre.

inlocuire cu unicul fiu al

nod de sters nodului de sters

recolorat in
negru

Figura 14.34 Cazul 2 de stergere nod din arbore Rosu & Negru

Situatiile complexe aparute la stergerea unui nod dintr-un arbore de
tip Rosu si Negru sunt apar in cazul in care nodul de sters si fiul sau sunt de
culoare neagra. Prin eliminarea nodului, arborele devine dezechilibrat
deoarece o parte din drumuri contin cu un nod negru mai putin. Spre
deosebire de cazurile prezentate anterior, nu mai este posibila refacerea
numarului de noduri negre prin recolorarea fiului deoarece acesta are deja
culoarea neagra. Reechilibrarea arborelui este realizata printr-un numar fix
de operatii de rotire sau recolorare.

Pentru a descrie aceste cazuri particulare de dezechilibru si solutiile
asociate, se fac o serie de notatii care sa ajute intelegerea operatiilor, figura
14.35. Se noteaza cu:

- P, nodul parinte al nodului de sters;

- F, nodul fiu al nodului de sters;

- B, nodul bunic al nodului de sters; acest nod este nodul parinte al

nodului P;
- U, nodul unchi al nodului de sters; acest nod este reprezentat de
al doilea fiu al nodului B;

- N; nodul nepot al nodului de sters; este reprezentat de fiul din
stanga al nodului unchi;

- N, nodul nepot al nodului de sters; este reprezentat de fiul din
dreapta al nodului unchi;

nod bunic

nod parinte
nod unchi

U

nod de sters IR

Figura 14.35 Arbore Rosu & Negru

Urmatorul caz analizat este dat de figura 14.36 in care nodul cu valoarea
25 este sters. Situatia este descrisa de ipotezele:
- nodul de sters este negru;
- unicul fiu al nodului de sters este negru;
- nodul unchi al nodului de sters este negru;
- nodul parinte este negru;
- nodurile nepoti sunt negre.

. P |
1 dezechilibru

Figura 14.36 Cazul 3 de stergere nod din arbore Rosu & Negru

Prin stergerea nodului cu valoarea 25, arborele sau subarborele
analizat ce are radacina pe nodul cu valoarea 32 este dezechilibrat la
dreapta deoarece drumurile care pornesc din radacina si continua pe partea
stanga au cu un nod negru mai putin. Reechilibrarea arborelui se realizeaza
prin modificarea culorii nodului unchi, valoarea 79, in rosu, figura 14.37.
Astfel, este redus cu unu numarul de noduri negre din drumurile ce pornesc
din radacina 32.

e P__

. modificare culoare nod unchi
1 dezechilibru

Figura 14.37 Solutie de reechilibrare caz 3 pentru arbore Rosu & Negru

In cazul in care, nodul cu valoarea 32 reprezintd rad&cina unui
subarbore, analiza se continua in sus pana cand se atinge radacina arborelui
sau pana cand arborele este reechilibrat pe baza unei solutii din cele
descrise.

Al patrulea caz de stergere a unui nod dintr-un arbore Rosu si Negru
ia In considerare situatia descrisa in figura 14.38:

- nodul de sters este negru;

- unicul fiu al nodului de sters este negru;

- nodul unchi al nodului de sters este negru;

- nodul parinte este rosu;

- nodurile nepoti sunt negre.

P — P_.
1 dezechilibru

Figura 14.38 Cazul 4 de stergere nod din arbore Rosu & Negru

Asemenea cazului anterior, arborele isi pierde calitatea de a fi Rosu si
Negru in urma stergerii deoarece nu toate drumurile de la radacina la
nodurile frunza au acelasi numar de noduri negre. Reechilibrarea este
realizatd prin interschimbarea culorilor nodului parinte si nodului unchi,
figura 14.39.

R P-.
1 dezechilibru h

Figura 14.39 Solutie de reechilibrare caz 4 pentru arbore Rosu & Negru

In situatia in care arborele din figura 14.34 reprezintd un subarbore
atunci solutia de reechilibrare prezentata are doar efecte locale, deoarece
lungimea masurata in numar de noduri negre a tuturor drumurilor din acest
subarbore este mai mica cu unu fata de situatia initiala. Din acest motiv,
reechilibrarea se continua recursiv catre radacina arborelui.

Cazul al cincilea de stergere a unui nod ia in considerare ipotezele
descrise in figura 14.40:

- nodul de sters este negru;

- unicul fiu al nodului de sters este negru;

- nodul unchi al nodului de sters este rosu;

- nodul parinte este negru;

- nodurile nepoti sunt negre.

. P |
1 dezechilibru

Figura 14.40 Cazul 5 de stergere nod din arbore Rosu & Negru

Reechilibrarea arborelui pentru cazul 5 de dezechilibru se realizeaza
prin interschimbarea culorilor nodului unchi si nodului parinte, urmata de o
rotatie la stdnga in nodul parinte, figura 14.41.

Figura 14.41 Solutie de reechilibrare caz 5 pentru arbore Rosu & Negru

Analizand figura 14.41 se observa ca solutia cazului 5 nu conduce la
reechilibrarea totala a arborelui. Zona de dezechilibru este modificata astfel
incat sa poata fi reechilibrata intr-un numar finit de pasi. Aceasta este
analizata prin prisma cazului patru care a fost descris sau prin intermediul
cazurilor sase si sapte. De exemplu, arborele obtinut in figura 14.41 este
reechilibrat, in figura 14.42 prin intermediul solutie oferite in cazul patru,
interschimband culorile nodului cu valoare 32 si nodului cu valoarea 54.

Figura 14.42 Reechilibrare arbore Rosu & Negru din figura 14.41

Urmatoarele doua cazuri analizeaza culoarea nodurilor nepoti luand in
calcul situatii derivate din cazul patru.
Cazul sase, descris in figura 14.43, este definit de urmatoarele

ipoteze:

nodul de sters este negru;

unicul fiu al nodului de sters este negru;
nodul unchi al nodului de sters este negru;
nodul parinte este rosu sau negru;

nodul nepot N; este rosu;

nodul nepot N, este negru.

. P |
1 dezechilibru

Figura 14.43 Cazul 6 de stergere nod din arbore Rosu & Negru

Reechilibrarea arborelui din figura 14.43 este realizata prin:
- interschimbarea culorilor nodului parinte si a nodului unchi;
- rotirea subarborelui cu radacina in nodul unchi la dreapta.

E dezechilibru interschimb culori' (1) + rotire (2)

v >

Figura 14.44 Solutie de reechilibrare caz 6 pentru arbore Rosu & Negru

Rezultatul obtinut in urma operatiei de schimbare a culorii si de rotire
nu conduce la reechilibrarea arborelui. Cu toate acestea, noua forma a
subarborelui permite reechilibrarea la pasul urmator, deoarece situatia
curenta descrie cazul sapte .

Cazul sase, descris in figura 14.45, este definit de urmatoarele
ipoteze:

- nodul de sters este negru;

- unicul fiu al nodului de sters este negru;

- nodul unchi al nodului de sters este negru;

- nodul parinte este rosu sau negru;

- nodul nepot N; este rosu sau negru;

- nodul nepot N, este rosu.

. P |
1 dezechilibru

Figura 14.45 Cazul 7 de stergere nod din arbore Rosu & Negru

Reechilibrarea situatie descrise in figura 14.46 se realizeaza prin:
- interschimbare culoare nod parinte cu nodul unchi;

- rotire la stdnga a arborelui in nodul parinte;

- modificare culoare nepot N; in negru.

interschimb culori (1) + rotire (2)+

(1) schimbare culoare(3)

. P
1 dezechilibru h

Figura 14.46 Solutie de reechilibrare caz 7 pentru arbore Rosu & Negru

Figura 14.46 prezinta rezultatul obtinut in urma reechilibrarii. Se
observa eliminarea dezechilibrului din acest arbore sau subarbore.

Pentru exemplele analizate in acest capitol s-a considerat ca nodul de
sters se gaseste in partea stdnga a nodului parinte. Pentru situatia opusa,
solutiile descrise au aceleasi efect daca sufera mici modificari prin prisma
noului reper de vizualizare a arborelui.

De asemenea, in exemplele prezentate reechilibrarea arborelui are un
caracter local pentru a descrie tehnicile de reechilibrare, insa realizare unei
aplicatii trebuie sa implementeze secvente care sa parcurga arborele de jos
in sus, de la pozitia nodului de sters catre radacina arborelui si care sa
reechilibreze toata structura.

