
12. ARBORI BINARI ŞI ARBORI DE CĂUTARE

12.1 Structura de date de tip arborescent

Construirea unei structurii de date de tip arborescent porneşte de la

problema pe care o avem de rezolvat.
Pentru găsirea soluţiei ecuaţiei] b a, [pentru x 0) x (f  se efectuează

cu metode de calcul numeric, dintre care cea mai simplă este aceea a
înjumătăţirii intervalului.

Se calculează:

2 /) b a (c  (12.1)

Dacă:

0) c (f *) a (f  (12.2)

înseamnă că rădăcina , în caz contrar) c a, [x ] b (c, x  .
Noul subinterval este şi el divizat. Astfel, avem imaginea unei

modalităţi de lucru ierarhizată pe atâtea niveluri câte sunt necesare obţinerii
unei precizii pentru soluţia ecuaţiei 0) x (f  . Se asociază acestor niveluri
reprezentarea grafică din figura 12.1.

 [a, b]

[a ,]
a + b

2
(, b]

a + b

2

[a ,]
3a + b

4
(,]

3a + b

4

a + b

2
(,]

a + b

2

a + 3b

4
(, b]

a + 3b

4

Figura 12.1 Reprezentarea grafică asociată divizării intervalelor

Pentru evaluarea expresiei aritmetice:

dc

yxdcba
e





)()(
 (12.3)

prin modul de efectuare a calculelor conduce la reprezentarea din figura
12.2.

e

d c

*

x y

+

c d
a b

*

/

+
+

Figura 12.2 Reprezentarea arborescentă asociată evaluării expresiei

Pentru regăsirea cărţilor într-o bibliotecă, în fişierul tematic cotele se

structurează pe nivele, ca în exemplul din figura 12.3.

 biblioteca
1xxxxx : 7xxxxx

matematica
1xxxxx : 23xxxx

calculatoare
24xxxx : 51xxxx

economie
52xxxx : 7xxxxx

algebra geometrie
1xxxxx / 198xxx /
 197xxx 23xxxx

hardware software
24xxxx / 420xxx /
 419xxx 51xxxx

teorie software
52xxxx / 681xxx /
 680xxx 7xxxxx

Figura 12.3 Structura asociată fişierului de cote ale cărţilor

Reprezentarea în memorie a informaţiilor care au multiple legături

între ele, trebuie să fie astfel făcută, încât să poată realiza parcurgerea
completă a zonelor sau localizarea unui element din structură.

Se observă că în arborescenţă există un nod numit rădăcină sau
părinte. Acesta are descendenţi. Fiecare descendent poate fi la rândul său
părinte şi în acest caz are descendenţi.

Arborele binar este caracterizat prin aceea că, orice nod al său are un
singur părinte şi maxim doi descendenţi. Fiecare nod este reprezentat prin
trei informaţii şi anume:

 Z – informaţia utilă care face obiectul prelucrării, ea descriind
elementul sau fenomenul asociat nodului;

  – informaţia care localizează nodul părinte;
  – informaţia (informaţiile) care localizează nodul (nodurile)

descendent (descendente).

Alocarea dinamică determină ca  şi  să fie variabile aleatoare, ale
căror legi de repartiţie sunt necunoscute. Valorile lor sunt stocate în zona de
memorie, formând împreună cu variabila Z structura de date asociată unui
nod, structură ce corespunde tripletului (Zj, j,  j) asociat nodului j dintr-un
graf de formă arborescentă binară.

Volumul informaţiilor destinate localizării nodurilor, depinde de
obiectivele urmărite şi de rapiditatea cu care se doreşte localizarea unui
anumit nod. Cu cât diversitatea prelucrărilor este mai mare, cu atât se
impune stocarea mai multor informaţii de localizare.

)(Zadr

)(Zadr

1 jj

1 - jj









Zj-1

Zj  j j 

Zj + 1

 j-1

 j+1

1-j 

1-j 

Figura 12.4 Modelul grafic asociat tripletului (Zj, j,  j)

Dacă tripletul (Zj, j,  j) ce corespunde modelului grafic din figura

12.4 permite baleierea de sus în jos, sau de jos în sus, pe o ramură a
arborelui. Pentru a parcurge pe orizontală arborele, este necesară atât o
informaţie suplimentară de localizare j  , care corespunde nodului vecin din

dreapta de pe acelaşi nivel, cât şi informaţia j  pentru localizarea nodului

din stânga de pe acelaşi nivel.
Un astfel de arbore se descrie prin:

) , , , , Z(jjjjj  (12.4)

Descrierea completă a unui arbore, presupune crearea mulţimii

tripletelor sau cvintuplelor asociate nodurilor.
De exemplu, arborescenţei asociate evaluării expresiei:

e = a + b + c; (12.5)

prezentate în figura 12.5 îi corespunde alocarea şi iniţializarea zonelor de
memorie din figura 12.6.

 =

+

c +

a b

e

Figura 12.5 Structura arborescentă asociată evaluării expresiei e

+

= null

e null

c null +

a null b null

Figura 12.6 Alocarea şi iniţializarea zonelor de memorie

pentru implementarea structurii arborescente

Acestor reprezentări grafice, trebuie să le corespundă algoritmi

pentru încărcarea adreselor, întrucât a construi forma liniarizată a structurii
arborescente, înseamnă în primul rând, a aloca zone de memorie şi în al
doilea rând, a iniţializa membrii structurii cu adrese care să permită
reconstruirea corectă a înlănţuirii.

Se observă că pentru iniţializarea corectă, este necesară existenţa la
un moment dat a pointerilor spre trei zone de memorie alocate dinamic şi
anume:

 pp – pointerul spre zona alocată nodului precedent (părinte);
 pc – pointerul spre zona asociată nodului curent;
 pd – pointerul spre zona asociată primului descendent;

Construirea nodului) j j, Zj,( revine la efectuarea iniţializărilor:

(pd); new

pd; pc

pc; pp

pd; . (pc) ref

pp; . (pc) ref

citita; valoare_ Z. (pc) ref

j

 j

 j














 (12.6)

După efectuare secvenţei se face trecerea la pasul următor. Folosind

simbolurile, orice structură arborescentă se reprezintă prin:
 N mulţimea nodurilor
 A mulţimea arcelor

De exemplu, arborescenţa dată pentru calculul expresiei 12.5 se
reprezintă prin:

N = { e , = , a, +, b, + , c } (12.7)

şi

A = { (a+) , (b+) , (c+) , (+, =) , (=, e) } (12.8)

Se observă că pentru fiecare element al mulţimii N, se alocă dinamic

zona de memorie care conţine şi informaţiile , jj  . La alocare este

posibilă numai iniţializarea zonei Zj.
Odată cu alocarea se iniţializează şi un vector de pointeri, cu adresele

corespunzătoare zonelor de memorie puse în corespondenţă cu nodurile. În
continuare, preluând elementele mulţimii A, are loc completarea câmpurilor

j j şi  . De exemplu, pentru arborele binar din figura 12.7 construirea se

efectuează prin alocarea a 7 zone de memorie cu structura) , , Z(jjj 

pentru nodul din mulţimea }G F, E, D, C, B, A, { N  şi se iniţializează vectorul
de pointeri pp[i] după cum urmează:

(ZG)adr [7] pp

(ZF)adr [6] pp

(ZE)adr [5] pp

(ZD)adr [4] pp

(ZC)adr [3] pp

(ZB)adr [2] pp

(ZA)adr [1] pp









 (12.9)

Baleierea mulţimii:

} (CG) (CF), (BE), (BD), (AC), (AB), { A  (12.10)

revine la efectuarea atribuirilor:

pp[2]). (pp[1] ref 
pp[4]). (pp[2] ref 
pp[6]). (pp[3] ref 

NULL). (pp[7] ref). (pp[6] ref). (pp[5] ref). (pp[4] ref   (12.11)
pp[1]). (pp[2] ref 
pp[2]). (pp[4] ref 
pp[1]). (pp[3] ref 
pp[3]). (pp[6] ref 
pp[3]). (pp[7] ref 

NULL). (pp[1] ref). (pp[1] ref  

 A

B C

D E F G

Figura 12.7 Arbore binar

Pentru arborii binari echilibraţi, există posibilitatea ca după alocarea

memoriei să se descrie elementele mulţimii A, după care iniţializările
câmpurilor θj şi γj să se facă prin apelarea unei funcţii. Problematica devine
mai simplă, dacă arborele binar este complet, adică are n niveluri la bază
2(n-1) elemente descendente, fără a fi părinte, noduri terminale.

În programele C/C++, pentru implementarea structurilor de date
necontigue, arborele binar se defineşte prin următorul tip de bază derivat.

struct arbore
 {
 int valoare;
 arbore *precedent;
 arbore *urmator;
 };
class arb
 {
 arbore *rad;
 };

struct arbore_oarecare
 {
 int valoare;
 arbore_oarecare **fii; //lista fiilor unui nod
 int nrfii; //nr de fii ai nodului
 };
class arb_oarecare
 {
 arbore_oarecare *rad;
 };

struct arbore_binar
 {
 int valoare;
 arbore_binar *stanga;
 arbore_binar *dreapta;
 };
class arb_binar
 {
 arbore_binar *rad;
 };

12.2 Transformarea arborilor oarecare în arbori binari

Aplicaţiile concrete, asociază unor obiecte, subansamble sau procese,

structuri de tip arborescent care nu sunt binare, astfel încât se conturează
ideea ca arborii binar sunt cazuri particulare de arbori, mai ales prin
frecvenţa cu care sunt identificaţi în practică. Mecanismele de realizare şi de
utilizare a arborilor binar îi fac practice, deşi în realitate au frecvenţa de
apariţie scăzută.

Apare problema transformării unei structuri arborescente oarecare
într-o structură arborescentă binară, problema rezolvabilă prin introducerea
de noduri fictive. Astfel, fiind dată arborescenţa din figura 12.8,
transformarea ei în structură arborescentă binară, revine la introducerea
nodurilor fictive, x, y, u, v, w, rezultând arborele din figura 12.9.

A

B C D

e f g h i j k i

Figura 12.8 Structură arborescentă oarecare

A

B x

e u C D

f g h y i
v

j w

k l

Figura 12.9 Structură arborescentă cu noduri fictive

Arborele oarecare, are un număr de noduri mai mic decât arborele
binar, nodurilor fictive corespunzându-le zone de memorie structurate
(NULL, γ j, θj).

Alocarea dinamică presupune, ca în zona [Di, Df] prin dealocare să
apară goluri, adică zone libere ce sunt realocate altor variabile. Este
necesară o gestionare a acestor zone şi periodic trebuie să se efectueze o
realocare prin reorganizare, aşa fel încât să dispară golurile rezultate în
procesul de alocare-dealocare multiplă. De exemplu, pentru un program P,
este necesară alocarea a 3 zone de memorie de 1500, 2000, 4000 baiţi, ce
corespund arborilor binar A, B şi C.

Alocarea este efectuată iniţializând variabilele pointer pA, pB şi pC prin
apelul succesiv al funcţiei alocare(), (pas 1).

Dealocarea după un timp a arborelui binar B, determină apariţia unui
gol între zonele ocupate de variabilele A şi C, (pas 2).

Alocarea unei zone de memorie pentru arborii binari D (3000 baiţi) şi
E (1000 baiţi), revin la a dispune pe D în continuarea lui C şi a intercala
arborele E între A şi C, în “golul” rezultat din dealocarea lui E, rămânând
între E şi C un “gol” de 300 baiţi, (pas 3).

Dacă se păstrează informaţiile privind modul de iniţializare a
variabilelor pointer care stochează adresele nodurilor rădăcină a arborilor A,
E, C şi D, este posibilă glisarea informaţiilor în aşa fel încât să dispară
“golul” dintre E şi C. Nu s-a luat în considerare însăşi necontiguitatea din
interiorul fiecărui arbore.

În practică, apare problema optimizării dispunerii variabilelor
dinamice, dar şi cea a alegerii momentului în care dispersia elementelor
atinge un astfel de nivel, încât zona pentru alocare dinamică este practic
inutilizabilă şi trebuie reorganizată.

12.3 Arbori binari de căutare

Un arbore binar de căutare este un arbore binar care are

proprietatea că prin parcurgerea în inordine a nodurilor se obţine o secvenţă
monoton crescătoare a cheilor (cheia este un câmp ce serveşte la
identificarea nodurilor în cadrul arborelui). Câmpul cheie este singurul care
prezintă interes din punct de vedere al operaţiilor care se pot efectua
asupra arborilor de căutare.

Principala utilizare a arborilor binari de căutare este regăsirea rapidă
a unor informaţii memorate în cheile nodurilor. Pentru orice nod al unui
arbore de căutare, cheia acestuia are o valoare mai mare decât cheile
tuturor nodurilor din subarborele stâng şi mai mică decât cheile nodurilor ce
compun subarborele drept.

 20

10 25

7 26 22

Figura 12.10 Arbore binar de căutare

Structura de date folosită pentru descrierea unui nod al unui arbore

binar de căutare va fi următoarea:

struct arbore_binar
 {
 int cheie;
 arbore_binar *stanga;
 arbore_binar *dreapta;
 };
class arb_binar
 {
 arbore_binar *rad;
 };

Rădăcina arborelui binar de căutare va fi definită în felul următor:

arb *Radacina = NULL; (12.12)

Se observă ca fiecare nod este compus din cheia asociată şi din

informaţiile de legătură care se referă eventualii fii.
Aşa cum le spune şi numele, arborii binari de căutare sunt folosiţi

pentru regăsirea rapidă a informaţiilor memorate în cheile nodurilor. De
aceea căutarea unui nod cu o anumită valoarea a cheii este o operaţie
deosebit de importantă.

Căutarea începe cu nodul rădăcină al arborelui prin compararea
valorii cheii căutate cu valoarea cheii nodului curent. Dacă cele două valori
coincide, căutarea s-a încheiat cu succes. Dacă informaţia căutată este mai
mică decât cheia nodului, căutarea se continuă în subarborele stâng. Dacă
cheia căutată este mai mare decât valoarea cheii nodului, căutarea se reia
pentru subarborele drept.

Crearea unui arbore binar de căutare presupune adăugarea câte unui
nod la un arbore iniţial vid. După inserarea unui nod, arborele trebuie să
rămână în continuare ordonat. Din acest motiv, pentru adăugarea unui nod
se parcurge arborele începând cu rădăcina şi continuând cu subarborele
stâng sau drept în funcţie de relaţia de ordine dintre cheia nodului şi cheia
de inserat. Astfel, dacă cheia de inserat este mai mica decât cheia nodului,
următorul nod vizitat va fi rădăcina subarborelui stâng. În mod similar, dacă
cheia de inserat este mai mare decât cheia nodului, traversarea se va
continua cu nodul rădăcină al subarborelui drept. Această modalitate de
traversare se continuă până în momentul în care se ajunge la un nod fără

descendent. Acestui nod îi va fi adăugat un nod fiu cu valoarea dorită a
cheii.

Aplicaţiile care utilizează arbori binari de căutare pot permite sau pot
interzice, în funcţie de filozofia proprie, inserarea în cadrul arborelui a unei
chei care există deja.

Inserarea în cadrul arborelui anterior a unui nou nod cu valoarea cheii
egală cu 12 conduce către următorul arbore, figura 12.11.

 20

10 25

7 26 2212

Figura 12.11 Arbore binar de căutare după inserarea unui nod

Maniera uzuală de inserare a unui nod într-un arbore binar de căutare

este cea recursivă.
În practică, de cele mai multe ori căutarea şi inserarea se folosesc

împreună. Astfel, în cazul în care căutarea unei chei s-a efectuat fără
succes, aceasta este adăugată la arborele binar de căutare.

O altă operaţie care se poate efectua asupra unui arbore binar de
căutare este ştergerea unui nod care are o anumită valoare a cheii. Dacă
valoarea cheii este găsită în cadrul arborelui, nodul corespunzător este
şters. Arborele trebuie să rămân arbore de căutare şi după ştergerea
nodului.

În ceea ce priveşte nodul care va fi şters, acesta se va încadra într-
una din variantele următoare:

a) nodul nu are subarbori (fii);
b) nodul are doar subarbore stâng;
c) nodul are doar subarbore drept;
d) nodul are atât subarbore stâng cât şi subarbore drept.
În cazul în care nodul nu are nici subarbore stâng dar nici subarbore

drept (varianta a) este necesară doar ştergerea nodului. Nu sunt necesare
alte operaţiuni de actualizare a arborelui.

…

Figura 12.12 Arbore binar de căutare înainte de ştergerea unui nod

În figura 12.12 este prezentat un fragment al unui arbore binar de
căutare din care dorim să ştergem nodul din dreapta, iar în figura 12.13 se
prezintă acelaşi fragment de arbore dar după ştergerea nodului dorit.

…

Figura 12.13 Arbore binar de căutare după ştergerea unui nod

Pentru cazurile b şi c (nodul pe e dorim să-l ştergem are subarbore

stâng sau drept), pe lângă ştergerea nodului este necesară şi actualizarea
legăturilor dintre nodurile arborelui. În figurile 12.14 şi 12.16 se prezintă
câte un fragment dintr-un arbore binar de căutare din care dorim să
ştergem nodul evidenţiat. În figura 12.14, nodul pe care dorim să-l ştergem
are numai subarbore stâng iar cel din figura 12.16 are doar subarbore
drept. În figurile 12.15 şi 12.17 se pot observa efectele operaţiei de
ştergere.

…

Figura 12.14 Subarbore numai cu descendent stâng

 …

Figura 12.15 Subarbore după efectuarea ştergerii

…

Figura 12.16 Subarbore numai cu descendent drept

…

Figura 12.17 Subarbore după efectuarea ştergerii

Pentru aceste prime trei cazuri, actualizarea arborelui se face în felul

următor: fiul nodului care va fi şters, dacă există, va deveni fiul tatălui
acestuia. Actualizarea arborelui este urmată de ştergerea nodului din
memorie.

Cazul în care nodul ce se doreşte a fi şters are atât subarbore stâng
cât şi subarbore drept necesită o tratare specială. Astfel, mai întâi se
localizează fie cel mai din stânga fiu al subarborelui drept fie cel mai din
dreapta fiu al subarborelui drept. Cheile acestor noduri sunt valoarea
imediat următoare cheii nodului ce se doreşte a fi şters şi valoarea
precedentă.

După suprimarea nodului dorit, arborele va trebui să rămână în
continuare arbore de căutare ceea ce înseamnă că relaţia de ordine dintre
nodurile arborelui va trebui să se păstreze. Pentru aceasta, unul din
nodurile prezentate anterior va trebui adus în locul nodului care se doreşte
a fi şters după care are loc ştergerea efectivă a nodului dorit.

Determinarea celui mai din dreapta fiu al subarborelui stâng se face
parcurgând subarborelui stâng prin vizitarea numai a fiilor din dreapta.
Primul nod care nu are subarbore drept este considerat ca fiind cel mai din
dreapta nod al subarborelui stâng.

În figura 12.18 se prezintă un fragment de arbore binar de căutare
din care dorim să suprimăm nodul evidenţiat care are doi descendenţi.
Presupunem ca nodul haşurat este cel mai din dreapta fiu al subarborelui
stâng. Acest nod va lua locul nodului care se va şterge. În figura 12.19 este
reprezentat fragmentul de arbore după efectuarea operaţiei de ştergere a
nodului dorit.

… ……

…

Figura 12.18 Subarbore cu doi descendenţi

… … ……

…

Figura 12.19 Subarbore după efectuarea ştergerii

12.4 Aplicaţii care utilizează structura de date de tip

arbore binar de căutare

Asupra arborilor binari de căutare pot fi efectuate o serie de operaţii,

dintre care o parte sunt specifice tuturor structurilor de date compuse
(adăugare element, ştergere elemente) iar altele sunt specifice acestui tip
de structură de date. De asemenea se remarcă operaţii la nivel de element
(nod), precum şi operaţii care implică întregul arbore.

Programul următor, exemplifică o modalitate de creare a unui arbore
binar de căutare, stergere noduri, traversare, numarare noduri şi de tipărire
a acestuia:

#include <iostream.h>
#include <conio.h>
#include <stdio.h>
#include <malloc.h>
#include <string.h>

struct nod
 {
 int info;
 nod *stg,*drt;
 };

class arbbin
 {
 nod *rad;
 int stergere(nod *&);
 void stergere_nod(nod*&,int);
 public:
 arbbin()
 {rad=NULL;};
 ~arbbin()
 {rad=NULL;};
 void traversare_srd(nod*);
 void srd();
 void traversare_rsd(nod *);
 void rsd();
 void traversare_sdr(nod *);
 void sdr();
 int sumaFrunze(nod*);
 int sFrunza();
 int numara(nod *);
 int numara_nod();
 void print(nod *);
 void tiparire();
 void salvare();
 nod *inserare_nod(nod *,int);
 void operator + (int);
 void operator - (int);
 arbbin &operator >(FILE *);
 arbbin &operator <(FILE *);
 void inserare_cuv(nod *& ,char*);
 void insert(char *);
 nod *operator [] (int);
};

nod *arbbin::inserare_nod(nod *rad,int k)
 {
 if (rad)
 {
 if (k<rad->info) rad->stg=inserare_nod(rad->stg,k);
 else
 if (k>rad->info) rad->drt=inserare_nod(rad->drt,k);
 else printf("\nNodul exista in arbore!");
 return rad;
 }
 else
 {
 nod *p=new nod;
 p->stg=NULL;
 p->drt=NULL;
 p->info=k;
 return p;
 }
 }

void arbbin::operator +(int k)
 {

 rad=inserare_nod(rad,k);
 }

void arbbin::traversare_srd(nod *rad)
 {
 if (rad)
 {
 traversare_srd(rad->stg);
 printf(" %d",rad->info);
 traversare_srd(rad->drt);
 }
 }

void arbbin::srd()
 {
 nod *p;
 p=rad;
 traversare_srd(p);
 }

void arbbin::traversare_rsd(nod *rad)
 {
 if (rad)
 {
 printf(" %d",rad->info);
 traversare_rsd(rad->stg);
 traversare_rsd(rad->drt);
 }
 }

void arbbin::rsd()
 {
 nod *p;
 p=rad;
 traversare_rsd(p);
 }

void arbbin::traversare_sdr(nod *rad)
 {
 if (rad)
 {
 traversare_sdr(rad->stg);
 traversare_sdr(rad->drt);
 printf(" %d",rad->info);
 }
 }

void arbbin::sdr()
 {
 nod *p;
 p=rad;
 traversare_sdr(p);
 }

void arbbin::print(nod *rad)
 {
 if (rad)
 {
 printf("%d",rad->info);
 if((rad->stg)||(rad->drt))
 {

 printf("(");
 print(rad->stg);
 printf(",");
 print(rad->drt);
 printf(")");
 }
 }
 else
 printf("-");
 }

void arbbin::tiparire()
 {
 nod *p;
 p=rad;
 print(p);
 }

int arbbin::sumaFrunze(nod *rad)
 {
 if (rad)
 if(!rad->stg&&!rad->drt)
 return rad->info;
 else
 return sumaFrunze(rad->stg)+sumaFrunze(rad->drt);
 else
 return 0;
 }

int arbbin::sFrunza()
 {
 nod *p;
 p=rad;
 return sumaFrunze(p);
 }

int arbbin::numara(nod *rad)
 {
 if (rad)
 return 1+numara(rad->stg)+numara(rad->drt);
 else return 0;
 }

int arbbin::numara_nod()
 {
 nod *p;
 int nr;
 p=rad;
 nr=numara(p);
 return nr;
 }

void arbbin::stergere_nod(nod *&rad,int inf)
 {
 nod *aux;
 if (!rad) printf("\nNodul nu exista in arbore!");
 else
 if (inf<rad->info) stergere_nod(rad->stg,inf);
 else
 if (inf>rad->info) stergere_nod(rad->drt,inf);
 else

 {
 aux=rad;
 if (!aux->stg)
 {
 rad=aux->stg;
 delete(aux);
 }
 else
 if(!aux->drt)
 {
 rad=aux->drt;
 delete(aux);
 }
 else
 rad->info=stergere(rad->stg);
 }
 }

int arbbin::stergere(nod *&p)
 {
 if (p->stg)
 return stergere(p->stg);
 else
 {
 nod *q=p;
 int inf=q->info;
 p=p->stg;
 delete(q);
 return inf;
 }
 }

void arbbin::operator -(int inform)
 {
 nod *nou;
 nou=rad;
 stergere_nod(nou,inform);
 }

nod *arbbin::operator [] (int inf)
 {
 nod *aux;
 aux=rad;
 while(aux&&aux->info!=inf)
 {
 if (inf<aux->info)
 aux=aux->stg;
 else
 if (inf>aux->info)
 aux=aux->drt;
 };
 if (aux&&aux->info==inf)
 cout<<"\nNodul cautat exista in arbore!";
 else
 cout<<"\nNodul cautat nu exista in arbore!";
 return aux;
 }

void meniu()
 {

 cout<<"\n 1.ADAUGARE NOD DE LA TASTATURA";
 cout<<"\n 2.STERGERE NOD DE LA TASTATURA";
 cout<<"\n 3.CAUTARE NOD IN ARBORE";
 cout<<"\n 4.TRAVERSARI ARBORE-SRD(),RSD(),SDR()";
 cout<<"\n 5.SUMA INFORMATIILOR DIN FRUNZE ";
 cout<<"\n 6.NUMARUL NODURILOR DIN ARBORE";
 cout<<"\n 7.AFISARE ARBORE";
 cout<<"\n 0.TERMINARE";
 }

void main()
{
 arbbin arb;
 int informatie;
 char optiune;
 arb+10;arb+7;arb+15;arb+9;arb+3;arb+8;arb+25;
 meniu();
 optiune='1';
 while (optiune!='0')
 {
 cout<<"\nOptiunea dorita este:";
 cin>>optiune;
 if(((optiune>='0')&&(optiune<='9'))||(optiune=='n'))
 {
 switch(optiune)
 {
 case '1':
 char op;
 cout<<"\nNoul nod de introdus:";
 cin>>informatie;
 arb+informatie;
 cout<<"\nMai doriti adaugarea unui alt nod(d/n)?";
 cin>>op;
 while (op=='d')
 {
 cout<<"\nNoul nod de introdus:";
 cin>>informatie;
 arb+informatie;
 cout<<"\nSe va mai adauga alt nod(d/n)?";
 cin>>op;
 }
 getch();
 meniu();
 break;
 case '2':
 cout<<"\nNodul care se va sterge:";
 cin>>informatie;
 arb-informatie;
 getch();
 meniu();
 break;
 case '3':
 int elem;
 cout<<"\nNodul care va fi cautat:";
 cin>>elem;
 arb[elem];
 getch();
 meniu();
 break;
 case '4':
 printf("\nArborele traversat in SRD:");

 arb.srd();
 printf("\nArborele traversat in RSD:");
 arb.rsd();
 printf("\nArborele traversat in SDR:");
 arb.sdr();
 getch();
 meniu();
 break;
 case '5':
 printf("\nSuma inf frunze:%d", arb.sFrunza());
 getch();
 meniu();
 break;
 case '6':
 cout<<"\nNumarul de noduri:"<<arb.numara_nod();
 getch();
 meniu();
 break;
 case '7':
 printf("\nArborele tiparit in RSD:");
 arb.tiparire();
 getch();
 meniu();
 break;
 case '0':
 break;
 }
 }
 else cout<<"\nOptiunea nu exista in meniu!";
 }
}

