12. ARBORI BINARI SI ARBORI DE CAUTARE

12.1 Structura de date de tip arborescent

Construirea unei structurii de date de tip arborescent porneste de la
problema pe care o avem de rezolvat.

Pentru gasirea solutiei ecuatiei f(x)=0pentruxe[a,b] se efectueaza
cu metode de calcul numeric, dintre care cea mai simpla este aceea a
injumatatirii intervalului.

Se calculeaza:

c=(a+b)/2 (12.1)
Daca:
f(a)*f(c)<O0 (12.2)

inseamna ca radacina xe[a,c), In caz contrar xe(c,b].

Noul subinterval este si el divizat. Astfel, avem imaginea unei
modalitati de lucru ierarhizata pe atatea niveluri cate sunt necesare obtinerii
unei precizii pentru solutia ecuatiei f(x)=0. Se asociaza acestor niveluri

reprezentarea grafica din figura 12.1.

[a,b]
., 270 2F0 b
2 2
[a, 2270, (Jarb atb, (afb a+3b (3136
4 4 2 2 4 4

Figura 12.1 Reprezentarea grafica asociata divizarii intervalelor
Pentru evaluarea expresiei aritmetice:

e_(a+b+c+d)-(x—y)
c—d

(12.3)

prin modul de efectuare a calculelor conduce la reprezentarea din figura
12.2.

SN
/\
NI
/\Xy

/\cd

Figura 12.2 Reprezentarea arborescenta asociata evaluarii expresiei

Pentru regasirea cartilor intr-o biblioteca, in fisierul tematic cotele se
structureaza pe nivele, ca in exemplul din figura 12.3.

biblioteca
1xxxxXX : 7XXXXX

/\

matematica calculatoare economie
IXXXXX : 23 XXXX 24xxxXX : 51 xxxX 52XXXX : 7TXXXXX
algebra geometrie hardware software teorie software
1xxxxx/ 198xxx / 24xxXxXX / 420xxx / 52xxXxXX / 681xxx/
197xxx 23 XXXX 419xxx 51xxxx 680xxx TXXXXX

Figura 12.3 Structura asociata fisierului de cote ale cartilor

Reprezentarea in memorie a informatiilor care au multiple legaturi
intre ele, trebuie sa fie astfel facuta, incadt sa poata realiza parcurgerea
completa a zonelor sau localizarea unui element din structura.

Se observa ca in arborescenta exista un nod numit radacinda sau
parinte. Acesta are descendenti. Fiecare descendent poate fi la randul sau
parinte si in acest caz are descendenti.

Arborele binar este caracterizat prin aceea ca, orice nod al sau are un
singur parinte si maxim doi descendenti. Fiecare nod este reprezentat prin
trei informatii si anume:

e Z - informatia utila care face obiectul prelucrarii, ea descriind
elementul sau fenomenul asociat nodului;
- informatia care localizeaza nodul parinte;

v
e 0 - informatia (informatiile) care localizeaza nodul (nodurile)
descendent (descendente).

Alocarea dinamica determina ca y si 6 sa fie variabile aleatoare, ale

caror legi de repartitie sunt necunoscute. Valorile lor sunt stocate in zona de
memorie, formand impreuna cu variabila Z structura de date asociata unui
nod, structura ce corespunde tripletului (Z;, y;, 6;) asociat nodului j dintr-un

graf de forma arborescenta binara.

Volumul informatiilor destinate localizarii nodurilor, depinde de
obiectivele urmarite si de rapiditatea cu care se doreste localizarea unui
anumit nod. Cu cat diversitatea prelucrarilor este mai mare, cu atat se
impune stocarea mai multor informatii de localizare.

y j=adr(Z;)
0 =adr(Z,,,)

Figura 12.4 Modelul grafic asociat tripletului (Z;, y ;, ;)

Daca tripletul (Z;,y; 6;) ce corespunde modelului grafic din figura

12.4 permite baleierea de sus in jos, sau de jos in sus, pe o ramura a
arborelui. Pentru a parcurge pe orizontala arborele, este necesara atat o
informatie suplimentara de localizare ¢ ;, care corespunde nodului vecin din

dreapta de pe acelasi nivel, cat si informatia Q ; pentru localizarea nodului

din stanga de pe acelasi nivel.
Un astfel de arbore se descrie prin:

(Z,y 50,0 ,Q) (12.4)

Descrierea completa a unui arbore, presupune crearea multimii
tripletelor sau cvintuplelor asociate nodurilor.
De exemplu, arborescentei asociate evaluarii expresiei:
e=a+b+g (12.5)

prezentate in figura 12.5 ii corespunde alocarea si initializarea zonelor de

memorie din figura 12.6.

a/\b

Figura 12.5 Structura arborescenta asociata evaluarii expresiei e

null

N |l

Figura 12.6 Alocarea si initializarea zonelor de memorie
pentru implementarea structurii arborescente

Acestor reprezentari grafice, trebuie sa le corespunda algoritmi
pentru incarcarea adreselor, intrucat a construi forma liniarizata a structurii
arborescente, inseamna in primul rand, a aloca zone de memorie si in al
doilea rand, a initializa membrii structurii cu adrese care sa permita
reconstruirea corecta a inlantuirii.

Se observa ca pentru initializarea corecta, este necesara existenta la
un moment dat a pointerilor spre trei zone de memorie alocate dinamic si
anume:

e pp - pointerul spre zona alocata nodului precedent (parinte);
e pc - pointerul spre zona asociata nodului curent;
e pd - pointerul spre zona asociata primului descendent;

Construirea nodului (Zj, 7 j, 8 j) revine la efectuarea initializarilor:

ref (pc).Z ; = valoare _citita;

ref (pc). y ; = pp;
ref (pc). € ; = pd;

(12.6)
pp = pc;
pc = pd;
new (pd);

Dupa efectuare secventei se face trecerea la pasul urmator. Folosind
simbolurile, orice structura arborescenta se reprezinta prin:
e N multimea nodurilor
e A multimea arcelor
De exemplu, arborescenta data pentru calculul expresiei 12.5 se
reprezinta prin:

N={e, = ,a +,b +,c} (12.7)

Si

A={(a+), (b+t), (ct+), (+ =), (=€)} (12.8)

Se observa ca pentru fiecare element al multimii N, se aloca dinamic

zona de memorie care contine si informatiile y ,6 ;. La alocare este

posibila numai initializarea zonei Z;.

Odata cu alocarea se initializeaza si un vector de pointeri, cu adresele
corespunzatoare zonelor de memorie puse in corespondenta cu nodurile. In
continuare, preluand elementele multimii A, are loc completarea campurilor
7 ;si @ ;. De exemplu, pentru arborele binar din figura 12.7 construirea se

efectueaza prin alocarea a 7 zone de memorie cu structura (Z;, y , 0 ;)
pentru nodul din multimea N={A,B,C,D,E,F,G}si se initializeaza vectorul
de pointeri pp[i] dupa cum urmeaza:

pp[l] = adr (ZA)
pp[2] = adr (ZB)
pp[3] = adr (ZC)
pp[4] = adr (ZD) (12.9)
pp[5] = adr (ZE)
pp[6] = adr (ZF)
pp[7] = adr (ZG)

Baleierea multimii:

A ={(AB),(AC),(BD),(BE),(CF),(CG)} (12.10)

revine la efectuarea atribuirilor:

ref (pp[1]).60 = pp[2]
ref (pp[2]).6 = pp[4]
ref (pp[3]).6 = pp[6]
ref (pp[4]).0 =ref (pp[5]). 0 =ref (pp[6]).0 =ref (pp[7]).6 =NULL (12.11)

ref (pp[2]).7 = pp[l]
ref (pp[4]).7 = pp[2]
ref (pp[3]).7 = pp[l]
ref (pp[6]).7 = pp[3]

ref (pp[7]).7 = ppl3]
ref (pp[1]).6 =ref (pp[1]).y =NULL

"
SN N

E

Figura 12.7 Arbore binar

Pentru arborii binari echilibrati, exista posibilitatea ca dupa alocarea
memoriei sa se descrie elementele multimii A, dupa care initializarile
campurilor 6; si y; sa se faca prin apelarea unei functii. Problematica devine
mai simplda, daca arborele binar este complet, adica are n niveluri la baza
2(n1) elemente descendente, fard a fi parinte, noduri terminale.

In programele C/C++, pentru implementarea structurilor de date
necontigue, arborele binar se defineste prin urmatorul tip de baza derivat.

struct arbore

int valoare;
arbore *precedent;
arbore *urmator;
class arb
arbore *rad;
struct arbore_oarecare
int valoare;
arbore_oarecare **fii; //lista fiilor unui nod
int nrfii; //nr de Fii ai nodului
class arb_oarecare
arbore_oarecare *rad;
struct arbore binar
int valoare;
arbore_binar *stanga;
arbore_binar *dreapta;
class arb_binar

arbore_binar *rad;

¥

12.2 Transformarea arborilor oarecare in arbori binari

Aplicatiile concrete, asociaza unor obiecte, subansamble sau procese,
structuri de tip arborescent care nu sunt binare, astfel incat se contureaza
ideea ca arborii binar sunt cazuri particulare de arbori, mai ales prin
frecventa cu care sunt identificati in practica. Mecanismele de realizare si de
utilizare a arborilor binar 1i fac practice, desi in realitate au frecventa de
aparitie scazuta.

Apare problema transformarii unei structuri arborescente oarecare
intr-o structura arborescenta binara, problema rezolvabild prin introducerea
de noduri fictive. Astfel, fiind data arborescenta din figura 12.8,
transformarea ei in structura arborescenta binara, revine la introducerea
nodurilor fictive, x, y, u, v, w, rezultand arborele din figura 12.9.

A

h i) ki

Figura 12.8 Structura arborescenta oarecare

N
N

/\ /\A

N
e

Figura 12.9 Structura arborescenta cu noduri fictive

Arborele oarecare, are un numar de noduri mai mic decat arborele
binar, nodurilor fictive corespunzandu-le zone de memorie structurate
(NULL, v j, 8j).

Alocarea dinamica presupune, ca in zona [D;, Df] prin dealocare sa
apara goluri, adica zone libere ce sunt realocate altor variabile. Este
necesara o gestionare a acestor zone si periodic trebuie sa se efectueze o
realocare prin reorganizare, asa fel incat sa dispara golurile rezultate in
procesul de alocare-dealocare multipla. De exemplu, pentru un program P,
este necesara alocarea a 3 zone de memorie de 1500, 2000, 4000 baiti, ce
corespund arborilor binar A, B si C.

Alocarea este efectuata initializand variabilele pointer ps, ps Si pc prin
apelul succesiv al functiei alocare(), (pas 1).

Dealocarea dupa un timp a arborelui binar B, determina aparitia unui
gol intre zonele ocupate de variabilele A si C, (pas 2).

Alocarea unei zone de memorie pentru arborii binari D (3000 baiti) si
E (1000 baiti), revin la a dispune pe D in continuarea lui C si a intercala
arborele E intre A si C, in “golul” rezultat din dealocarea lui E, ramanand
intre E si C un “gol” de 300 baiti, (pas 3).

Daca se pastreaza informatiile privind modul de initializare a
variabilelor pointer care stocheaza adresele nodurilor radacina a arborilor A,
E, C si D, este posibila glisarea informatiilor in asa fel incat sa dispara
“golul” dintre E si C. Nu s-a luat in considerare insasi necontiguitatea din
interiorul fiecarui arbore.

In practica, apare problema optimizarii dispunerii variabilelor
dinamice, dar si cea a alegerii momentului in care dispersia elementelor
atinge un astfel de nivel, incat zona pentru alocare dinamica este practic
inutilizabila si trebuie reorganizata.

12.3 Arbori binari de cautare

Un arbore binar de cautare este un arbore binar care are
proprietatea ca prin parcurgerea in inordine a nodurilor se obtine o secventa
monoton crescatoare a cheilor (cheia este un camp ce serveste Ia
identificarea nodurilor in cadrul arborelui). Cadmpul cheie este singurul care
prezinta interes din punct de vedere al operatiilor care se pot efectua
asupra arborilor de cautare.

Principala utilizare a arborilor binari de cautare este regasirea rapida
a unor informatii memorate in cheile nodurilor. Pentru orice nod al unui
arbore de cautare, cheia acestuia are o valoare mai mare decat cheile
tuturor nodurilor din subarborele stang si mai mica decat cheile nodurilor ce
compun subarborele drept.

20

10 25/]/ | \ |

: el 1]] 1

Figura 12.10 Arbore binar de cautare

Structura de date folosita pentru descrierea unui nod al unui arbore
binar de cautare va fi urmatoarea:

struct arbore_binar
{
int cheie;
arbore_binar *stanga;
arbore_binar *dreapta;
};
class arb_binar
{
arbore_binar *rad;
}:

Radacina arborelui binar de cautare va fi definita in felul urmator:
arb *Radacina = NULL, (12.12)

Se observa ca fiecare nod este compus din cheia asociata si din
informatiile de legatura care se refera eventualii fii.

Asa cum le spune si numele, arborii binari de cautare sunt folositi
pentru regasirea rapida a informatiilor memorate in cheile nodurilor. De
aceea cautarea unui nod cu o anumitd valoarea a cheii este o operatie
deosebit de importanta.

Cautarea incepe cu nodul radacina al arborelui prin compararea
valorii cheii cautate cu valoarea cheii nodului curent. Daca cele doua valori
coincide, cautarea s-a incheiat cu succes. Daca informatia cautata este mai
mica decat cheia nodului, cautarea se continua in subarborele stang. Daca
cheia cdutata este mai mare decat valoarea cheii nodului, cautarea se reia
pentru subarborele drept.

Crearea unui arbore binar de cautare presupune adaugarea cate unui
nod la un arbore initial vid. Dupa inserarea unui nod, arborele trebuie sa
ramana in continuare ordonat. Din acest motiv, pentru adaugarea unui nod
se parcurge arborele incepand cu radacina si continuand cu subarborele
stang sau drept in functie de relatia de ordine dintre cheia nodului si cheia
de inserat. Astfel, daca cheia de inserat este mai mica Aclecét cheia nodului,
urmatorul nod vizitat va fi radacina subarborelui stang. In mod similar, daca
cheia de inserat este mai mare decat cheia nodului, traversarea se va
continua cu nodul radacina al subarborelui drept. Aceastda modalitate de
traversare se continua pana in momentul in care se ajunge la un nod fara

descendent. Acestui nod ii va fi adaugat un nod fiu cu valoarea dorita a
cheii.

Aplicatiile care utilizeaza arbori binari de cautare pot permite sau pot
interzice, in functie de filozofia proprie, inserarea in cadrul arborelui a unei
chei care exista deja.

Inserarea in cadrul arborelui anterior a unui nou nod cu valoarea cheii
egala cu 12 conduce catre urmatorul arbore, figura 12.11.

Figura 12.11 Arbore binar de cautare dupa inserarea unui nod

Maniera uzuala de inserare a unui nod intr-un arbore binar de cautare
este cea recursiva.

In practica, de cele mai multe ori cautarea si inserarea se folosesc
impreuna. Astfel, in cazul in care cautarea unei chei s-a efectuat fara
succes, aceasta este adaugata la arborele binar de cautare.

O alta operatie care se poate efectua asupra unui arbore binar de
cautare este stergerea unui nod care are o anumita valoare a cheii. Daca
valoarea cheii este gasitda in cadrul arborelui, nodul corespunzator este
sters. Arborele trebuie sa raman arbore de cautare si dupa stergerea
nodului.

In ceea ce priveste nodul care va fi sters, acesta se va incadra intr-
una din variantele urmatoare:

a) nodul nu are subarbori (fii);

b) nodul are doar subarbore stang;

¢) nodul are doar subarbore drept;

d) nodul are atat subarbore stang cat si subarbore drept.

In cazul in care nodul nu are nici subarbore stang dar nici subarbore
drept (varianta a) este necesara doar stergerea nodului. Nu sunt necesare
alte operatiuni de actualizare a arborelui.

Figura 12.12 Arbore binar de cautare inainte de stergerea unui nod

In figura 12.12 este prezentat un fragment al unui arbore binar de
cautare din care dorim sa stergem nodul din dreapta, iar in figura 12.13 se
prezinta acelasi fragment de arbore dar dupa stergerea nodului dorit.

Figura 12.13 Arbore binar de cautare dupa stergerea unui nod

Pentru cazurile b si ¢ (nodul pe e dorim sa-l stergem are subarbore
stang sau drept), pe langa stergerea nodului este necesara si actualizarea
leg&turilor dintre nodurile arborelui. In figurile 12.14 si 12.16 se prezintd
cate un fragment dintr-un arbore binar de cdutare din care dorim sa
stergem nodul evidentiat. In figura 12.14, nodul pe care dorim sd-I stergem
are numai subarbore stang iar cel din figura 12.16 are doar subarbore
drept. In figurile 12.15 si 12.17 se pot observa efectele operatiei de
stergere.

Figura 12.14 Subarbore numai cu descendent stdng

1]

Figura 12.15 Subarbore dupa efectuarea stergerii

\:Dj

Figura 12.16 Subarbore numai cu descendent drept

LT 1]

Figura 12.17 Subarbore dupa efectuarea stergerii

Pentru aceste prime trei cazuri, actualizarea arborelui se face in felul
urmator: fiul nodului care va fi sters, daca exista, va deveni fiul tatalui
acestuia. Actualizarea arborelui este urmata de stergerea nodului din
memorie.

Cazul in care nodul ce se doreste a fi sters are atat subarbore stang
cat si subarbore drept necesitd o tratare speciald. Astfel, mai intdi se
localizeaza fie cel mai din stanga fiu al subarborelui drept fie cel mai din
dreapta fiu al subarborelui drept. Cheile acestor noduri sunt valoarea
imediat urmatoare cheii nodului ce se doreste a fi sters si valoarea
precedenta.

Dupa suprimarea nodului dorit, arborele va trebui sa raméana in
continuare arbore de cautare ceea ce inseamna ca relatia de ordine dintre
nodurile arborelui va trebui sa se pastreze. Pentru aceasta, unul din
nodurile prezentate anterior va trebui adus in locul nodului care se doreste
a fi sters dupa care are loc stergerea efectiva a nodului dorit.

Determinarea celui mai din dreapta fiu al subarborelui stdng se face
parcurgand subarborelui stang prin vizitarea numai a fiilor din dreapta.
Primul nod care nu are subarbore drept este considerat ca fiind cel mai din
dreapta nod al subarborelui stang.

In figura 12.18 se prezintd un fragment de arbore binar de ciutare
din care dorim sa suprimam nodul evidentiat care are doi descendenti.
Presupunem ca nodul hasurat este cel mai din dreapta fiu al subarborelui
stang. Acest nod va lua locul nodului care se va sterge. In figura 12.19 este
reprezentat fragmentul de arbore dupa efectuarea operatiei de stergere a
nodului dorit.

ALY

Figura 12.18 Subarbore cu doi descendenti

N

Figura 12.19 Subarbore dupa efectuarea stergerii

12.4 Aplicatii care utilizeaza structura de date de tip
arbore binar de cautare

Asupra arborilor binari de cautare pot fi efectuate o serie de operatii,
dintre care o parte sunt specifice tuturor structurilor de date compuse
(adaugare element, stergere elemente) iar altele sunt specifice acestui tip
de structura de date. De asemenea se remarca operatii la nivel de element
(nod), precum si operatii care implica intregul arbore.

Programul urmator, exemplifica o modalitate de creare a unui arbore
binar de cautare, stergere noduri, traversare, numarare noduri si de tiparire
a acestuia:

#include
#include
#include
#include
#include

<iostream.h>
<conio.h>
<stdio.h>
<malloc.h>
<string.h>

struct nod

{
int info;
nod *stg,*drt;
};
class arbbin
{

nod *rad;
int stergere(nod *&);
void stergere_nod(nod*&, int);
public:
arbbin()
{rad=NULL;};
~arbbin()
{rad=NULL;};
void traversare_srd(nod¥*);
void srd(Q);
void traversare_rsd(nod *);
void rsd(Q);
void traversare_sdr(nod *);
void sdr(Q);
int sumaFrunze(nod*);
int sFrunza();
int numara(nod *);
int numara_nod();
void print(nod *);
void tiparire();
void salvare();
nod *inserare_nod(nod *,int);
void operator + (int);
void operator - (int);
arbbin &operator >(FILE *);
arbbin &operator <(FILE *);
void inserare_cuv(nod *& ,char*);
void insert(char *);
nod *operator [] (int);

}:
nod *arbbin::inserare_nod(nod *rad,int k)
if (rad)

if (k<rad->info) rad->stg=inserare_nod(rad->stg,k);

else

if (k>rad->info) rad->drt=inserare_nod(rad->drt,k);
else printfF("\nNodul exista iIn arbore!');

return rad;

}
else

{
nod *p=new nod;
p->stg=NULL;
p—>drt=NULL;
p—>info=k;
return p;

}

}

void arbbin::operator +(int k)

{

arbbin:

}

arbbin:

{

}

arbbin:

{

}

arbbin:

{

arbbin:

}

arbbin:

{

}

arbbin:

{

rad=inserare_nod(rad,k);

:traversare_srd(nod *rad)

if (rad)
{
traversare_srd(rad->stqg);
printf("" %d",rad->info);
traversare_srd(rad->drt);
}
:srd(Q)
nod *p;
p=rad;

traversare_srd(p);

:traversare_rsd(nod *rad)

if (rad)
{
printf("" %d",rad->info);
traversare_rsd(rad->stg);
traversare_rsd(rad->drt);
}
:rsdQ)
nod *p;
p=rad;

traversare_rsd(p);

:traversare_sdr(nod *rad)

if (rad)
{
traversare_sdr(rad->stg);
traversare_sdr(rad->drt);
printf("" %d",rad->info);
:sdrQ)
nod *p;
p=rad;

traversare_sdr(p);

print(nod *rad)

if (rad)
{
printf("'%d", rad->info);
if((rad->stg)| | (rad->drt))
{

}

void arbbin:

{

}

int arbbin::

{

}

int arbbin::

{

}

int arbbin::

{

}

int arbbin::

{

}

void arbbin:

{

printf("(M:;
print(rad->stg);

printf(",");
print(rad->drt);
printf()™);
}
}
else
printf('-"");
ttiparire()
nod *p;
p=rad;
print(p);

sumaFrunze(nod *rad)

if (rad)
if(lrad->stg&&!rad->drt)
return rad->info;
else

return sumaFrunze(rad->stg)+sumaFrunze(rad->drt);

else
return O;

sFrunza()

nod *p;
p=rad;
return sumaFrunze(p);

numara(nod *rad)

if (rad)
return l+numara(rad->stg)+numara(rad->drt);
else return O;

numara_nod()

nod *p;

int nr;
p=rad;
nr=numara(p) ;
return nr;

:stergere_nod(nod *&rad, int inf)

nod *aux;
if (Mrad) printf('"\nNodul nu exista iIn arbore!™);
else
if (inf<rad->info) stergere nod(rad->stg, inf);
else

if (inf>rad->info) stergere nod(rad->drt, inf);

else

}

int arbbin::

{

}

aux=rad;
if (Jaux->stg)
{
rad=aux->stg;
delete(aux);
}
else
if(laux->drt)
{
rad=aux->drt;
delete(aux);
}
else

rad->info=stergere(rad->stg);

stergere(nod *&p)

else

it (p->stg)

return stergere(p->stqg);

{
nod *g=p;
int inf=g->info;
p=p->stg;
delete(q);
return inf;

}

void arbbin::operator -(int inform)

{

}

nod *arbbin:

{

}

void meniuQ)

nod *nou;

nou=

rad;

stergere_nod(nou, inform);

ope

rator [] (int inf)

nod *aux;

aux=

rad;

whi le(aux&&aux->infol!=inf)

if (
else

retu

{
if (inf<aux->info)
aux=aux->stg;
else
if (inf>aux->info)
aux=aux->drt;

aux&&aux->info==inf)
cout<<'"\nNodul cautat exista in arbore!";

cout<<'"\nNodul cautat nu exista in arbore!™;
rn aux;

}

void main()

cout<<"\n 1.ADAUGARE NOD DE LA TASTATURA™;
cout<<'\n 2_STERGERE NOD DE LA TASTATURA™;
cout<<'"\n 3.CAUTARE NOD IN ARBORE";

cout<<'\n 4 .TRAVERSARI ARBORE-SRD(),RSD(),SDRQ";
cout<<'\n 5_.SUMA INFORMATIILOR DIN FRUNZE *;
cout<<'\n 6.NUMARUL NODURILOR DIN ARBORE";
cout<<'"\n 7 _AFISARE ARBORE";

cout<<'"\n 0.TERMINARE";

arbbin arb;

int informatie;

char optiune;
arb+10;arb+7;arb+15;arb+9;arb+3;arb+8;arb+25;

meniu();

optiune="1";
while (optiune!="0")

{

cout<<'\nOptiunea dorita este:";
cin>>optiune;
if(((optiune>="0")&&(optiune<="9"))| | (optiune=="n"))
{

switch(optiune)
{
case "1":
char op;
cout<<'\nNoul nod de introdus:";
cin>>informatie;
arb+informatie;
cout<<'"\nMai doriti adaugarea unui alt nod(d/n)?";
cin>>op;
while (op=="d")
{
cout<<"\nNoul nod de introdus:';
cin>>informatie;
arb+informatie;
cout<<'"\nSe va mai adauga alt nod(d/n)?";
cin>>op;

s
getch();
meniu(Q);
break;
case "2°:
cout<<'\nNodul care se va sterge:";
cin>>informatie;
arb-informatie;
getch();
meniu(Q);
break;
case "3":
int elem;
cout<<'"\nNodul care va fi cautat:";
cin>>elem;
arb[elem];
getch();
meniuQ);
break;
case "4-°:
printf(''\nArborele traversat in SRD:'");

arb.srd();
printf(''\nArborele traversat in RSD:");
arb.rsd();
printf('"\nArborele traversat in SDR:");
arb.sdr();
getch(Q);
meniuQ);
break;
case "5":
printf(''\nSuma inf frunze:%d", arb.sFrunza());
getch(Q);
meniuQ);
break;
case "6":
cout<<'\nNumarul de noduri:"<<arb.numara_nod();
getch();
meniuQ);
break;

case "7":
printF("\nArborele tiparit in RSD:");
arb.tiparire();
getch();
meniu(Q);
break;

case "0":
break;

}

}

else cout<<'\nOptiunea nu exista in meniu!";

}

