6. MATRICE RARE

6.1 Concepte de baza

Matricele rare fisi gasesc aplicabilitatea in modelarea unor procese de
natura industriald, economica, tehnicd, socialda etc. Capitolul de fata fisi
propune sa trateze modalitatile de reprezentare in structuri de date a
matricelor rare, precum si principalele operatii matriceale implementate intr-un
limbaj orientat pe obiecte. In final este prezentatd o aplicatie concreta -
estimarea parametrilor unei regresii statistice.

In rezolvarea multor probleme de natura economica, tehnica, sociala, a
diverselor probleme de optimizare, precum si in modelarea unor procese
industriale si tehnologice este necesar sa se determine modelul matematic care
descrie functionarea procesului respectiv. Descrierea acestor sisteme fizice
conduce la obtinerea unor modele matematice care fie in mod direct, prin
modelare, fie prin metoda de rezolvare implica sisteme de ecuatii algebrice
liniare sau probleme de programare liniara a caror matrice a coeficientilor este
rara (sparse), in sensul ca ponderea elementelor nenule in totalul elementelor
matricei este mica.

Din punct de vedere practic trebuie remarcat faptul ca analiza sistemelor
mai sus amintite conduce la obtinerea unor modele matematice de mari
dimensiuni care implica sisteme de ecuatii algebrice liniare de mii de ecuatii,
pentru a caror rezolvare sunt necesare resurse mari de memorie si timp de
calcul. In multe cazuri practice, cum sunt sistemele in timp real, timpul de
calcul este o resursa critica, nefiind permis sa depaseasca o valoare limita.

Modelele matematice ale proceselor reale implica un numar foarte mare
de variabile si restrictii care prezinta fenomenul de raritate ,sparsity, adica o
slaba interconectare a elementelor sale. Luarea in consideratie a fenomenului
de raritate furnizeaza un nou mod de abordare foarte eficient, ce implica in
dezvoltarea aplicatiilor informatice folosirea unor structuri de date speciale,
care sz“a conduca la reducerea resurselor de memorie si a timpului de calcul.

In general, o matrice (n,n) - dimensionala este rara atunci cand contine

un numar mic de elemente nenule 7, adicd r << n?. Cantitativ, matricele rare
sunt caracterizate de ponderea numarului de elemente nenule in totalul de
elemente, pondere ce defineste gradul de umplere al matricei. In aplicatiile
curente se intalnesc matrice rare cu grade de umplere intre 0,15% si 3%.

6.2 Memorarea matricelor rare

Se considera matricea:

1 0 0 00
0 0 -2 0 4

A= (6.1)
00 0 00
0 -1 0 00

Matricea A este un exemplu de matrice rara, ea continand 16 elemente
nule din totalul de 20.

Se defineste gradul de umplere, densitatea, unei matrice prin raportul
dintre numarul elementelor nenule si numarul total al elementelor sale:

G=—Px100(%) (6.2)
nxm
unde:
p - numarul de elemente nenule;
n - numarul de linii;

m - rlumérul de coloane.
In general se accepta ca o matrice este rara daca densitatea sa este de
cel mult 3%. Densitatea matricei A este G(A) =20%, ea fiind prezentata aici in

scopul ilustrarii conceptului de matrice rara.

Structura de date clasica folosita pentru manipularea matricelor, tabloul
de dimensiune (n, m) alocat la compilare, se dovedeste a fi ineficienta in cazul
in care matricea este rara. Un prim avantaj este legat de folosirea
neeconomica a spatiului de memorie prin alocarea de zone mari pentru
memorarea elementelor nule, care nu sunt purtatoare de informatie. Ocuparea
unor zone de memorie cu elemente nule nu se justifica deoarece acestea nu
contribuie la formarea rezultatului operatiilor cu matrice, adunare, inmultire
etc., conducand totodata si la marirea duratei de realizare a acestor operatii
prin ocuparea procesorului cu adunari si inmultiri scalare cu zero. Acest
inconvenient se manifesta cu atat mai pregnant cu cat dimensiunea matricei
este mai mare.

Prin urmare, pentru probleme de dimensiuni mari, s-a cdutat gasirea
unor modalitati de reprezentare compacta a matricelor rare, in care sa se
renunte la memorarea elementelor nule. In acest caz este necesar ca tehnicile
de memorare sa incorporeze pe langa elementele nenule si mijloacele de
identificare a pozitiilor acestor elemente in matrice.

Sunt prezentate in continuare cateva posibilitati de memorare compacta
a matricelor rare MR. Se face, de asemenea, o0 analiza a oportunitatii folosirii
fiecarei tehnici in parte, in functie de densitatea matricei.

Memorarea prin identificare binard se bazeaza pe natura binara a
sistemului de calcul, constand in memorarea numai a elementelor nenule ale

matricei intr-o zona primara ZP avand tipul de baza corespunzator tipului
elementelor matricei si dimensiunea egala cu numarul elementelor nenule.
Structura matricei este indicata printr-o secventa binara memorata intr-
0 zona secundara ZS.
Matricea A prezentata anterior se memoreaza astfel:
Zona primara:

Locatie |1| 2 |3 | 4
Valoare |1|-2 4| -1

Figura 6.1 Structura ZP pentru matricea A

Zona secundara:

Locatie 1 5|6 10
Valoare 1 o [o |[o Jo |Jo Jo |1 Jo |1
Locatie 11 15 | 16 20
Valoare o0 |o [o Jo Jo |o |1 Jo Jo Jo

Figura 6.2 Structura ZS pentru matricea A

Matricea A a fost memorata in ordinea liniilor, o alta posibilitate de
memorare fiind in ordinea coloanelor. Pentru a reduce spatiul ocupat de zona
secundara se poate implementa solutia data de memorarea la nivel de bit a
valorilor acesteia.

Daca matricea B cu dimensiunea (m, n) are densitatea G si daca tipul de
baza al matricei, respectiv tipul fiecaruia dintre elemente nenule ale matricei,
este reprezentat printr-un cuvant de b octeti, atunci zona primara va necesita
m*n*G cuvinte de b octeti iar zona secundara (m*n)/(8*b) cuvinte. Numarul
total de cuvinte necesare memorarii matricei B prin intermediul celor doua
zone este

DMR; = m*n*G + (m*n)/(8*b) (6.3)

Intrucat pentru memorarea matricei in forma clasicd sunt necesare DM = m*n
cuvinte, raportul dintre cerintele de memorie ale structurii de mai sus si a celei
standard este:

DMR 1
C, = L=G+— 6.4
' DM 8-b (6.4)

in relatia anterioara s-a considerat cd memorarea zonei secundare se
face la nivel de bit.

Considerand ca elementele matricei A sunt reale si se reprezinta pe 4
octeti, rezulta:

¢, =02 +3—12 =023 (6.5)

ceea ce indicd ca memorarea matricei A conform acestei structuri ocupa de
aproximativ patru ori mai putind memorie decéat cea standard.
Egaléand ¢, =1 se determina limita superioara a densitatii unei matrice

pentru care aceastd structura necesita mai putina memorie decadt cea
standard:

G . =1-—— 6.6
lim 8b ()

Pentru matricea A:

1

Gy =1-—=096=96% (6.7)
32

lim

Aceasta structura de memorare difera de abordari prin faptul ca in zona
secundara este alocata memorie si pentru elementele nule ale matricei.
Structura este mai putin eficienta pentru matricele de mari dimensiuni foarte
rare. Principala dificultate constd in complexitatea programelor de
implementare a operatiilor matriciale.

O alta modalitate de memorare prin identificare binara se obtine prin
modificarea informatiilor din zona secundarda. Aceasta zona va contine pe
jumatati de cuvant indicii de coloana a elementelor nenule din matrice, precum
si anumite informatii de control pentru identificarea rapida a pozitiei
elementelor nenule in matrice. Structura ZS pe cuvinte este urmatoarea:

Tabelul nr. 6.1 Structura ZS pe cuvinte

Numarul Jumatatea stanga Jumatatea dreapta
cuvantului
1 Numarul de linii Numarul de coloane
2 Numarul de elemente nenule
3 Numarul de elemente nenule | Numarul de elemente nenule
in linia 1 in linia 2
4 Numarul de elemente nenule | Numarul de elemente nenule
in linia 3 in linia 4
k Numarul de elemente nenule | Numarul de elemente nenule
in linia m-1 in linia m
k+1 Indicele de coloana al Indicele de coloana al celui
primului element memorat de-al doilea element
memorat
k+ 2 Indicele de coloana al celui etc.
de-al treilea element

memorat

j Indicele de coloana al
ultimului element memorat

Pentru matricea A, zona secundara ZS are structura din figura 6.3.

Locatie 1 2 3 4 5 6
Valoare 4 |5] 4 [1]2]o 1]1[3]5]2

Figura 6.3 Structura ZS pentru matricea A

In reprezentarea din figura 6.3 s-a considerat cd elementele nenule sunt
reprezentate pe 4 octeti astfel ca o jumatate de cuvant in zona secundara se
reprezinta pe 2 octeti. Prin structura de memorare prezentata mai sus se
memoreaza matrice a caror dimensiune maxima este de 9999 de linii sau
coloane cu numérul maxim de elemente nenule memorate egal cu 10% - 1. Se
face observatia ca in cazul matricelor patrate in primul cuvant din ZS se va
memora dimensiunea matricei.

Numarul total de cuvinte necesare zonei secundare este egal cu

(5+m+m*n*G)/2 (6.8)

valoarea fiind rotunjita la cel mai mare intreg. Numarul total de cuvinte
necesar memorarii unei matrice prin intermediul celor doua zone ZP si ZS este
egal cu

DMR; =(5+m+3*m*n*G)/2 (6.9)

Raportul dintre cerintele de memorie ale acestei structuri de identificare
binara si a celei standard este:

3G 5+m
C, = > +2*m*n (6.10)

Pentru o matrice patrata (m=n), egaland ¢, = 1 si trecand la limita
pentru m — o« rezulta valoarea maxima a densitatii unei matrice rare pentru
care structura prezentata este eficienta:

o 2[1-2M)0e66-666% (6.11)
" 3 2m

In relatia anterioard se ajunge la acelasi rezultat in cazul unei matrice
nepatratica pentru care se trece la limita pentru n— o si m— .

Pentru o matrice rara de dimensiune (100, 100), cu o medie de 66
elemente nenule pe linie, structura de mai sus necesita un total de 6600 + (5
+ 100 + 6600)/2 = 9952 cuvinte, cu 0,6% mai putin decat 10.000 cuvinte

necesare pentru memorarea standard. Intrucat densitatea elementelor nenule
ale unei matrice rare este de obicei intre 1% si 3%. Structura se dovedeste a fi
deosebit de eficienta.

Memorarea compacta aleatoare consta in utilizarea unei zone primare
ZP, continand numai elementele nenule ale matricei si a doua zone secundare
continand indicii de linie si de coloana corespunzatoare elementelor nenule.

Deoarece fiecare element nenul al matricei este identificat individual,
este posibil ca matricea sa fie memorata in ordine aleatoare. Matricea A se
memoreaza astfel:

Locatia 112 |34
Valoare 11-214|-1
Indice linie 112 |24
Indice coloana |1 |3 |52

Figura 6.4 Model de memorare compacta aleatoare a matricei A

Avantajele memorarii compacte aleatoare constau in faptul ca noile
elemente nenule ale matricei sunt addaugate la sfarsitul zonelor de memorare
fara a afecta celelalte elemente, precum si o manevrabilitate rapida a datelor.
In cazul matricelor simetrice aceasta structura de memorare este simplificata
prin memorarea numai a elementelor nenule de deasupra diagonalei principale,
precum si a elementelor nenule situate pe aceasta diagonala.

Numarul total de cuvinte necesare memorarii unei matrice de
dimensiune (m, n) este in acest caz

DMR; = 3*m*n (6.12)

Raportul dintre cerintele de memorie ale acestei structuri si a celei
standard este:

c,=3-G (6.13)

Egaland relatia anterioara cu unitatea se determina valoarea limita a
densitatii matricei rare pentru care aceasta structura este eficienta,
G, =333%.

In structura din figura 6.4, pentru identificarea elementelor nenule ale
matricei rare au fost folosite doua zone secundare corespunzatoare indicelui de
linie si de coloana. Se prezinta in continuare o alta posibilitate de memorare in
care se va utiliza o singura zona secundara de dimensiune egala cu numarul de
elemente nenule ale matricei, continand simultan informatii asupra indicilor de
linie si de coloana.

Astfel, fiecarui element din zona primara i se ataseaza in zona secundara
un numar intreg din care se determina indicii de linie si de coloana. Daca
elementul a; #0 este memorat in locatia k a zonei primare atunci in zona

lim

secundara se va memora un indice agregat ig a carui valoare este data de
relatia

ig = i+(j-1)*n (6.14)

unde n este numarul de coloane a matricei. Acest numar este suficient pentru
identificarea elementului in matrice.
Utilizand acest artificiu, matricea A se memoreaza astfel:

Locatia 11234
Valoare 1/-214 (-1
Indice agregat, ig | 1]12 22| 9

Figura 6.5 Model derivat de memorare compacta a matricei A

Pentru a regasi indicele de linie si de coloana al oricarui element
memorat in locatia k se utilizeaza urmatoarea tehnica de calcul:
- coloana j este obtinuta prin relatia:

Jj = ig(k)/n (6.15)

- linia i este determinata prin relatia:

i=ig(k)-(j-1)n (6.16)

Avantajul acestei structuri de memorare consta in faptul ca necesita mai
putind memorie decat cea precedentd, fiind in schimb mai putin rapida in ce
priveste manevrarea datelor.

Numarul total de cuvinte necesar memorarii matricei este

DMR; = 2*m*n*G (6.17)

Raportul dintre cerintele de memorie ale acestei structuri si a celei
standard este:

c, = 2G (6.18)

Valoarea limita a densitatii matricei pentru care aceasta structura este
eficienta este G = 50%.

Memorarea compacta sistematicd presupune ca elementele nenule ale
unei matrice rare sunt memorate intr-o anumita ordine, respectiv pe linii sau
pe coloane. In acest caz nu este necesar sa se memoreze in zonele secundare
indicii de linie, respectiv de coloana. Pentru o memorare in ordinea liniilor, ne
mai sunt necesari indicii de linie, insa se cere specificarea inceputului fiecarei
linii.

Si in acest caz exista mai multe structuri de memorare. Cea prezentata
in continuare este caracterizata prin faptul ca utilizeaza o singura zona
secundara ZS, care contine indicii de coloana ale elementelor nenule din
matricea considerata, precum si elemente false care indica inceputul fiecarei
linii si sfarsitul memorarii intregii matrice. De exemplu, un element zero in ZS

marcheaza prezenta unui element fals si acesta specifica in ZP numarul liniei
elementelor de la dreapta locatiei. Sfarsitul matricei este marcat prin prezenta
in ZP a unui element fals cu valoarea zero.

Pentru matricea A, memorarea in aceasta forma este urmatoarea:

Locatia 1 12 |3 |4 |56 |7 |8
ZP 1|1 (2 |-2 14 |4 |-1 |0
ZS O |1 |0 |3 [5]01]2 |0

Figura 6.6 Model de memorare compacta sistematica a matricei A

Pentru aceasta structura de memorare numarul maxim de cuvinte
necesar pentru a retine o matrice rara de dimensiune (m, n) este

DMRs = 2*(m*n*r+m+1) (6.19)
Raportul de memorare este:

2%(m+1)

C.=2*G+
m#*n

(6.20)

Se constata ca structura este eficienta pentru memorarea matricelor
rare cu o densitate a elementelor nenule de maximum 50%.

Memorarea cu_ajutorul listelor reprezintd o extensie a memorarii
compacte aleatoare. In timpul operatiilor de inversare a matricelor rare, noi
elemente nenule sunt continuu generate, iar altele sunt anulate si deci
structurile de memorare trebuie sa fie capabile sa execute aceste modificari
intr-un mod eficient. De aceea structurile de memorare bazate pe aceasta
tehnica sunt folosite pentru memorarea si manipularea matricelor rare de mari
dimensiuni.

Structura propusa utilizeaza o zona principala ZP pentru memorarea
elementelor nenule si trei zone secundare:

ZSL - memorarea indicilor de linie ale elementelor nenule;
ZSC - indicii de coloana;
ZSU - memorarea adresei urmatorului element al matricei.

Matricea A se memoreaza dupa cum urmeaza:

Locatia 1 2 3 4

ZP 1 -2 |4 -1
ZSL 1 2 2 4
ZSC 1 3 5 2
ZSU &2 | &3 | &4 | NULL

Figura 6.7 Model de memorare cu ajutorul listelor a matricei A

unde prin "&2” se intelege adresa celei de-a doua locatii.
Raportul dintre cerintele de memorare ale acestei structuri si a celei
standard este:

c,=4*G (6.21)

Prin urmare aceasta structura de memorare este eficienta pentru
memorarea matricelor cu o densitate a elementelor nenule de maximum 25%.

6.3 Determinarea gradului de umplere al unei matrice rare

Pentru a deduce daca o matrice este sau nu rara, se defineste gradul de
umplere al unei matrice, notat cu p. In cazul in care p < 0,3*m*n, se
considera ca matricea este rara.

Problema matricelor rare comporta doua abordari:

- abordarea statica, in care alocarea memoriei se efectueaza in faza de
compilare; aceasta presupune ca programatorul sa cunoasca cu o precizie
bund numarul maxim al elementelor nenule;

- abordarea dinamica, in care alocarea se efectueaza in timpul executiei, caz
in care nu este necesara informatia asupra numarului de elemente nenule;
aceasta abordare este dezvoltata in partea destinata listelor.

Memorarea elementelor matricei rare, presupune memorarea indicelui
liniei, a indicelui coloanei si, respectiv, valoarea nenula a elementului.

Se considera matricea:

(6.22)

o O N o
coO O O O
N O O O
o © O o
o O O o

Gradul de umplere al matricei A cu numarul de linii m = 4, numarul de
coloane, n= 5 si numarul elementelor nenule kK = 5 este:

G:i=0.25 (6.23)
5-4
Se definesc 3 vectori:
lin [] - memoreaza pozitia liniei ce contine elemente nenule;
col [] - memoreaza pozitia coloanei ce contine elemente nenule;
val [] - memoreaza valoarea nenula a elementelor.

Vectorii se initializeaza cu valorile:

Tabelul nr. 6.2 Valorile initiale ale vectorilor LIN, COL si VAL

LIN COoL VAL
1 3 6
2 1 7
3 4 9
4 2 8
4 3 2

Pentru efectuarea calculelor cu matrice rare definite in acest fel, un rol
important il au vectorii LIN, COL, iar pentru matricele rare rezultat se definesc
vectori cu un numar de componente care sa asigure si stocarea noilor
elemente ce apar.

Astfel, pentru adunarea matricelor rare definite prin:

Tabelul nr. 6.3 Valorile matricei rare A

LIN_A COL_A VAL_A
1 1 -4
2 2 7
4 4 8
Si
Tabelul nr. 6.4 Valorile matricei rare B
LIN_B COL_B VAL_B
1 1 4
2 2 -7
3 2 8
4 1 5
4 3 6

rezultatul final se stocheaza in vectorii:

Tabelul nr. 6.5 Valorile matricei rare rezultat C

LIN_C COoL_C VAL_C
1 1 0
2 2 0
3 2 8
4 1 5
4 3 6
4 4 8
? ? ?
? ? ?

Vectorii LIN_C, COL_C si VAL_C au un numar de componente definite,
egal cu:

DIM (LIN_A) + DIM (LIN_A) (6.24)

unde DIM() este functia de extragere a dimensiunii unui masiv unidimensional:
Astfel, daca:

int a[n-m]; (6.25)
atunci:
DIM (a) = n - m+1 (6.26)

Fiind abordata problematica matricelor rare, in mod natural se produce
eliminarea elementelor nenule, obtinandu-se in final:

Tabelul nr. 6.6 Continutul final al matricei rare C

LIN_C COL_C VAL_C
3 2 8
4 1 5
4 3 6
4 4 8
? ? ?
? ? ?
? ? ?
? ? ?

Prin secvente de program adecvate, se face diferenta intre definirea unui
masiv bidimensional si componentele initializate ale acestora, cu care se
opereaza pentru rezolvarea unei probleme concrete. Din punct de vedere al
nivelului de umplere, tabelul 6.6 descrie o matrice rara cu un grad de umplere
egal cu

- ;_2*100 =37.5% (6.27)

Situatia evidentiaza ineficienta in utilizarea spatiului de memorie alocat.

De exemplu, vectorii LIN_A si LIN_B au 3, respectiv 5 componente in
utilizare, dar la definire au rezervate zone de memorie ce corespund pentru
cate 10 elemente. Rezulta ca vectorul LIN_C trebuie definit cu 20 componente
incat sa preia si cazul in care elementele celor doua matrice rare au pozitii
disjuncte.

Din punct de vedere al criteriului minimizarii spatiului ocupat, aceasta
abordare nu este eficientda deoarece presupune in cele mai multe situatii

alocarea de spatiu care nu este utilizat. Pentru a atinge acest obiectiv,
implementarea unei clase asociate matricei rare va defini vectori alocati
dinamic, iar operatiile aritmetice vor genera vectori rezultat cu grad de
umplere egal cu 100%.

In cazul operatiilor de inmultire sau inversare, este posibil ca matricele
rezultat sa nu mai indeplineasca cerinta de matrice rara.

In acest scop, se efectueaza calculele cu matrice rezultat complet
definite si numai dupa efectuarea calculelor se analizeaza gradul de umplere si
daca acesta este redus, se trece la reprezentarea matricei complete ca matrice
rara.

Functiile full() si rar(), au rolul de a efectua trecerea la matricea
completa, respectiv la matricea rara.

Functia full() contine secventa:

for(i 0; 1 < nj; i++)

a [LIN_a[i]] [COL_a[i]] = val_a[i];

ce descrie initializarea elementelor matricei pe baza valorilor din vectori, iar
functia rar() contine secventa:

k =1;
for(1 =0; 1 < m; i++)
for(j =05 J < n; j++)
it [il[] '= 0)

{
LIN_a[k] = i;
COL_a[k] = J;
val_a[k] = al[ill];
k =k + 1i;

3}

In cazul in care gradul de umplere nu este suficient de mic astfel incat
matricea sa fie considerata rara, pentru memorare se utilizeaza o structura
arborescenta care contine pe nivelul al doilea pozitiile elementelor nenule, iar
pe nivelul al treilea valorile.

Astfel matricei:

73500
02480
A= (6.28)
00905
6 8 9 8 1

ii corespunde reprezentarea din figura 6.8.

pd /

e

Figura 6.8 Model grafic al matricei A

Se elaboreaza conventii asupra modului

initializate, fie prin definirea unui simbol terminal.

De asemenea. in cazul considerat s-a adoptat conventia ca
complete sa fie marcate cu simbolul -1, fara a mai
elementelor nenule, care sunt de fapt termenii unei progresii aritmetice.

Liniarizarea masivelor bidimensionale conduce
acestora peste vectori. Deci, punand in corespondenta elementele unei matrice
cu elementele unui vector, se pune problema transformarii algoritmilor, in asa
fel incat operand cu elementele vectorilor sa se obtina rezultate corecte pentru

calcule matriceale.
Astfel, considerand matricea:

1 2 3 4 5

de stabilire a

A=|6 7 8 9 10| (6.29)

11 12 13 14 15

prin punerea in corespondenta cu elementele vectorului b, sa se obtina

la

ideea suprapunerii

interschimbul intre doua coloane oarecare k si j ale matricei.

lungimii
vectorului de pozitii, fie prin indicarea la inceput a numarului de componente
liniile
specifica pozitiile

doo doi do2 do3 do4 dio aii a0 azi CPY) azs a4
1 [2 3 |4 |5 |6 |7 |..]11 |12 |13 |14 |15 |
bo b1 b, bs b4 bs bs b1o b11 bi> bis b14

Figura 6.9 Punerea in corespondenta a matricei A cu vectorul b

Daca matricea are M linii si N coloane si elemente de tip int, atunci

adresa elementului afi][j] este data de relatia

adr(a[ijfj]) = adr(a[0][0]) + ((i-0) * N+j) * 1g(int) (6.30)

iar din modul in care se efectueaza punerea in corespondenta a matricei A cu

vectorul b, rezulta:

adr(b[0]) = adr(a[0][0]) (6.31)

Pentru o matrice liniarizata, adresa elementului afiJ[j] in cadrul vectorului este
data de relatia

adr(alil[j]) = adr(b[0])+((i-0) * N+j) * Ig(int) = adr(b[(i-0) * N+j]) (6.32)

Daca se considera problema interschimbarii valorilor coloanelor j si k pentru
o matrice liniarizata atunci secventa de inlocuire a coloanelor

for(1 =0; 1 < M; i++)
{
c = a[illjl:
alilil = alillkl;
ali][k] = c;
}

este inlocuita prin secventa:

for(1 =0; 1 < M; i++)

{
¢ = b[(1-0) * N+j];
b [(i-0) * N+j] = b[(i-0) * N+K];
b[(i-0) * N+k] = c;

b

Transformarea algoritmilor de lucru cu masive bidimensionale in
algoritmi de lucru cu masive unidimensionale este benefica deoarece nu se mai
impune cerinta de transmitere ca parametru a dimensiunii efective a numarului
de linii, daca liniarizarea se face pe coloane, respectiv a numarului de coloane,
daca liniarizarea se face pe linii.

In cazul matricelor rare, aceeasi problema revine la interschimbarea
valorilor de pe coloana a treia dintre elementele corespondente ale coloanelor
k si j cu posibilitatea inserarii unor perechi si, respectiv, stergerii altora.

Pentru generalizare, un masiv n-dimensional rar, este reprezentat prin n
+ 1 vectori, fiecare permitand identificarea coordonatelor elementului diferit de
zero, iar ultimul stocand valoarea acestuia.

In cazul in care se construieste o matrice booleana ce se asociaza
matricei rare, o data cu comprimarea acesteia se dispun elementele nenule
intr-un vector. Punerea in corespondenta a elementelor vectorului are loc in
acelasi moment cu decomprimarea matricei booleene si analiza acesteia.

De exemplu, matricei :

(6.33)

O O w 0o
o O wWw o
© o O o
o kB O O
o N o
o © O o

se asociaza matricea booleana:

(6.34)

P o © o
ol—‘OO

1
0
1
0

R o Rk -
r O Fr O
© o o o

care prin compactare, ocupa primii 3 octeti ai unei descrieri, urmati de
componentele vectorului:

C=(84331,7,56,9) (6.35)

Compactarea este procedeul care asociaza un bit fiecarei cifre din forma
liniarizata a matricei B.

6.4 Software orientat spre lucrul cu matrice rare

Metodele de calcul cu matrice rara pentru a fi eficiente trebuie sa
beneficieze de proportia mare de elemente nule din aceste matrice, ceea ce
creeaza necesitatea considerarii unor tehnici speciale de memorare,
programare si analiza numerica.

O cerinta esentiala in programarea matricelor rare consta in memorarea
si executarea operatiilor numerice numai cu elementele nenule ale matricei, de
a salva memorie si timp de calcul. In acest caz memorarea standard, devenind
ineficienta, este abandonata si inlocuitda cu metode de memorare adecvate,
cateva dintre acestea fiind prezentate in paragraful anterior.

Un program de calcul cu matrice rare este cu atat mai eficient cu cat
timpul de calcul si cerintele de memorie necesare sunt mai reduse fata de
acelea ale unui program traditional. De aceea, tehnica de programare trebuie
sd realizeze o proportie convenabila intre timpul de calcul si memoria utilizata,
cerinte care de cele mai multe ori sunt contradictorii. In general, este
recunoscuta necesitatea unei anumite de structuri de memorare a datelor si o
anumita tehnica de manipulare a acestora in cadrul unui algoritm in care sunt
implicate matricele rare.

Principiul fundamental de programare cu matrice rare consta in
memorarea si manipularea numai a elementelor nenule, de sortare si ordonare
in structuri speciale in vederea mentinerii structurii de matrice rara si a
stabilitatii numerice, de evitare a buclelor complete.

In scopul ilustrarii principalelor operatii efectuate asupra matricelor rare
s-a facut implementarea acestora in C++, utilizdnd mediul de programare
Visual C++. Pentru reprezentarea matricelor s-a ales memorarea compacta
aleatoare, datorita flexibilitatii in manevrarea datelor. Este prezentata in
continuare o parte a clasei MatriceRara, continand constructorii, destructorul,
cateva dintre functiile si operatorii implementati si sectiunea privata.

class MatriceRara

/*******************************/

/* Atribute */
/*******************************/

private:

long dim; //numarul de elemente nenule
int m,n; //dimensiunea matricei

int * coloane; //vectorul pentru index coloane
int * linii; //vectorul pentru index linii
double * valori; //vectorul pentru valori

/*******************************/

/* Constructor & Destructor */
/*******************************/
public:

MatriceRara(void);

MatriceRara(const MatriceRara & MR);
MatriceRara(int M, int N, int D, double *val, int *lin, int *col);
MatriceRara(double **matrice, Iint M, int N);
virtual ~ MatriceRara();

/*******************************/

/* Metode auxiliare */
/*******************************/
public:

bool EsteRara();

static MatriceRara Unitate(int);
double UrmaQ);

double ** GetMatrice();

/*******************************/

/* Metode de acces */
/*******************************/
public:

inline Int getDim();

inline int getLinii();

inline int getColoane();

inline double getValoareElement(int i);
inline int getColoanaElement(int 1);
inline Int getLinieElement(int i);

double getvaloareElement(int i

,int
bool setVanareElement(lnt i,int j,
double operator QQ(int i, int j);

1
i

nt valoare);

friend ostream& operator <<(ostream&, MatriceRara &);
friend istream& operator >>(istream&, MatriceRara &);

/*******************************/

/* Metode de prelucrare */
/*******************************/

void Sortare();

MatriceRara operator =(MatriceRara &);
MatriceRara operator +(MatriceRara &);
MatriceRara operator -(MatriceRara &);

MatriceRara operator *(MatriceRara &);
MatriceRara operator *(double);
MatriceRara operator '();

MatriceRara Inversa();

}:

In cadrul sectiunii private sunt definite urmatoarele atribute:

m,n - dimensiunea matricei initiale;

dim - numarul de elemente nenule;

coloane - pointer la masive de intregi reprezentdnd coloana elementelor
nenule;

linii - pointer la masive de intregi reprezentand linia elementelor nenule;

valori - pointer la un masiv avand tipul de baza al elementelor matricei.

Aplicatia informatica realizata vizeaza principalele operatii necesare
manipularii matricelor rare:
- construirea acestora prin introducerea datelor de la tastatura; acest
obiectiv este atins prin supraincarcarea operatorului >> prin rutina

istream& operator >>(istream& intrare, MatriceRara &MR)

{

ifT(MR.dim)
delete[] MR.coloane;
delete[] MR.ILinii;
delete[] MR.valori;

cout<<'™\n Numarul de linii ale matricei:";intrare>>MR.m;

cout<<'\n Numarul de coloane ale matricei:";intrare>>MR.n;

cout<<'\n Numarul de elemente nenule:";intrare>>MR.dim;

MR.coloane = new int[MR.dim];

MR_Tinii = new int[MR.dim];

MR_.valori = new double[MR.dim];

for(int 1=0;i<MR.dim;i++)

{
cout<<'"\n Valoare a "'<<i+l<<'"-a este:"';
cout<<’\n\t Linia:";intrare>>MR_linii[i];
cout<<’\n\t Coloana:";intrare>>MR.coloane[i];
cout<<'\n\t Valoare:";intrare>>MR.valori[i];

3

return intrare;

}

- vizualizarea matricelor rare prin intermediul operatorului >>;

ostream& operator <<(ostreamé& iesire, MatriceRara & MR)
{
iesire<<'\n Matricea rara de dimensiune (‘<<
MR.m<<","<<MR.n<<'") este:";
for(int k=0;k<MR.dim;k++)
iesire<<’\n element["<<
MR_Tinti[k]<<"]["<<MR.coloane[k]<<"] - "<<MR.valori[K];

iesire<<'\n Vizualizare normala :\n";
for(int 1=0;i<MR.m;i++)

{
for(int j = O;j<MR.n;j++)
iesire<<"\t"<<MR.getValoareElement(i,j);
iesire<<'\n";
¥ o
return iesire;
}

- prin intermediul constructorilor clasei este posibila crearea unei
matrice rare initiala fara valori, sau a unei matrice ce preia valorile
dintr-o colectie de trei vectori sau dintr-o matrice normala ce este
validata

Y feiaiaiaiaiaiasiaisisiaiaiaiaiaciasiaiaiaiaiaiaiaiaiaiaioiaia /

/* Constructori */

/ /

MatriceRara: :MatriceRara(void):m(0),n(0),dim(0)
{

coloane=NULL;

linii=NULL;

valori=NULL;

}

MatriceRara: :MatriceRara(int M, int N, int D, double *val, int *lin, int
*col)

{

m=M;

n=N;

dim = D;

if({dim)

{

coloane = new Int[dim];
linii = new int[dim];
valori = new double[dim];
for(int 1=0;i<dim;i++)
{
coloane[i] = col[i];
Linii[i] = lin[i];
valori[i] = val[i];
}

}

else

{

coloane = linii = NULL;
valori = NULL;

}

by

MatriceRara: :MatriceRara(double **matrice, Iint M, int N)

{

/= validare matrice rara */
int nenule = 0;

for(int 1=0;i<M;i++)
for(int j=0;j<N;j++)
if(matrice[i][j]1) nenule++;
iT(((nenule*100)/(M*N))>100)
{

/= matricea nu este rara */
coloane = linii = NULL;

valori = NULL;

m=n=dim = 0;

else

/* matricea este rara */
coloane = new int[nenule];

linii = new int[nenule];

valori = new double[nenule];

m = M;

n = N;

dim = nenule;

int k=0;
for(i=0;i<M;i++)
for(int j=0;j<N;j++)
if(matricel[il[jJD
{
coloane[Kk]= j;
linii[K] = i;

valori[k] = matrice[i]1[i];

k++;

- clasa permite copierea valorilor intre diferite obiecte de tip

MatriceRara prin intermediul constructorului

operatorului =;

de copiere si a

/*****************************/

/* Copy constructor */
/*****************************/

MatriceRara: :MatriceRara(const MatriceRara &MR)

{

coloane = new int[dim];
linii = new int[dim];
valori = new double[dim];
for(int 1=0;i<dim;i++)
{
coloane[i] = MR.coloane[i];
linti[i] = MR_Tinii[i];

valori[i] = MR.valori[il;

}
¥
else
{
coloane = linii = NULL;
valori = NULL;
}
}
MatriceRara MatriceRara::operator =(MatriceRara & MR)
{
if(dim)
delete[] coloane;
delete[] linii;
delete[] valori;
by
dim = MR.dim;
m = MR.m;
n = MR.n;
if(dim)
{
coloane = new int[dim];
linii = new iInt[dim];
valori = new double[dim];
for(int 1=0;i<dim;i++)
{
coloane[i] = MR.coloane[i];
linti[i] = MR_Iinii[i];
valori[i] = MR.valori[i];
}
}
else
{
coloane = linii = NULL;
valori = NULL;
}
return *this;
by

- pentru a asigura gestiunea eficienta a memoriei aplicatiei se
implementeaza destructorul clasei care asigura eliberarea memoriei
rezervate de cele trei masiv de date;

/*****************************/

/* Desstructor */
Y feiaiaiaiaiaiaiaisisiaiaiaiaiasiaiaiaiaiaiaiaiaiaiaiaioiaia /
MatriceRara: :~MatriceRara()

{

delete[] coloane;
delete[] linii;
delete[] valori;

- principalele operatii matriceale: adunarea, scaderea, transpunerea,
inmultirea si inversarea.

Pe parcursul dezvoltarii clasei MatriceRara s-a dovedit necesara
implementarea unei functii bool MatriceRara::EsteRara(), care sa verifice daca
0 matrice este rara.

bool MatriceRara::EsteRara()

1 T(((dim*100)/(n*m)>30)) return false;
else return true;

3

In urma prelucrdrii matricelor si prin generarea unor obiecte noi ca
rezultate ale prelucrarilor aritmetice exista situatii in care matricea isi pierde
caracteristica de a fi rara. Pentru a implementa solutii software eficiente, este
indicat ca modul de stocare a matricei sa fie ales in functie de nivelul de
memorie ocupat. Prin validarea matricei rare cu metoda EsteRara(), datele pot
fi stocate sub forma de matrice normala prin intermediul metodei double **
GetMatrice()

double** MatriceRara::GetMatrice()

double **matrice=NULL;
matrice = new double*[m];
for(int k=0;k<m;k++)

matrice[k] = new double[n];
for(int i=0;i<m;i++)

for(int j=0;j<n;j++)

{

matrice[i][J]=0;

for(i=0;i<this->dim;i++)
matrice[linii[i]][coloane[i]]=valori[i];
return matrice;

3

Produsul implementeaza metoda void Sortare() ce permite rearanjarea
valorilor din matricea rara astfel incat acestea sa corespunda unui mode de
aranjare bazat pe parcurgerea pe linii a matricei. Aceasta conditie reprezinta o
ipoteza de start in derularea operatiilor aritmetice de adunare, scadere si
inmultire deoarece contribuie la obtinerea unei metode de prelucrare mai
eficiente din punctul de vedere al efortului procesor.

void MatriceRara::Sortare()
{
/* metoda rearanjeaza elementele dupa linii */
bool flag = true;
while(flag)
{

flag = false;
for(int 1=0;i<dim-1;i++)

temp = coloane[i];

coloane[i] = coloane[i+1];
coloane[i+1] = temp;

double valoaretemp = valori[i];
valori[i] = valori[i+1];
valori[i+1] = valoaretemp;

flag = true;

else
if(linti[i]==linii[i+1])
if(coloane[i]>coloane[i+1])

{
int temp = coloane[i];
coloane[i] = coloane[i+1];
coloane[i+1] = temp;
double valoaretemp = valori[i];
valori[i] = valori[i+1];
valori[i+1] = valoaretemp;
flag = true;

}

}

Pentru a permite accesul programatorilor la atributele matricei rare, sunt
implementate o serie de metode care returneaza valorile acestor caracteristici.

/*******************************/

/* Metode de acces */
/*******************************/

int MatriceRara::getDim(Q{ return this->dim;}

int MatriceRara::getLinii(Q{ return this->m;}

int MatriceRara: :getColoane(){ return this->n;}

double MatriceRara::getValoareElement(int 1){ return valori[
int MatriceRara: :getColoanaElement(int 1){ return coloane[i]
int MatriceRara::getLinieElement(int i1){ return linii[i];}

s

1
}

Metodele de prelucrare a unei matrice sunt bazate pe algoritmi in care
accesul la elementele matricei se realizeaza direct prin intermediul sintaxei
matricei[i][j]. Din punct de vedere al structurii interne, modelul ales in clasa
MatriceRara pentru implementarea unei matrice rare difera de abordarea
clasica a masivului bidimensional. Pentru a permite programatorilor, intr-un
mod transparent, accesul direct la elementele matricei se definesc metodele:

double MatriceRara::getValoareElement(int i, iInt j)
{
for(int k=0;k<dim;k++)
if((linti[K]==i)&&(coloane[k]==})) return valori[k];
return O;

}

bool MatriceRara::setValoareElement(int i, int j, int valoare)

{

/= metoda valideaza noua valoare */
if(valoare) return false;

for(int k=0;k<dim;k++)
if((coloane[k]==1)&&(linii[k]==}))

valori[k]=valoare;
return true;

}

return false;

}

double MatriceRara::operator (Q(int i, int j)

return this->getValoareElement(i,j);

b

In subcapitolele urmé&toare se face o prezentare detaliatd a operatorilor
care implementeaza principalele operatii matriceale: adunarea, scaderea,
transpunerea, inmultirea si inversarea.

6.5 Adunarea, scaderea si transpunerea

Prin prisma caracterului dinamic al modului de alocare a memoriei si a
caracteristicilor unice ale matricelor rare, adunarea acestor structuri de date
presupune parcurgerea unei serii pagsi:

- determinarea numarului de elemente nenule ale matricei suma; din
punctul de vedere al operanzilor sunt definite doua situatii de
realizare a sumei, cu elemente comune si cu elemente distincte; in
cazul sumei a doua elemente comune, se verifica daca suma acestora
este zero, caz in care rezultatul nu este retinut in matricea rara
generata;

- alocarea memoriei corespunzatoare acestui numar pentru cele trei
masive unidimensionale;

- parcurgerea celor doua matrice pe linii sau pe coloane si
determinarea sumei.

Prin elemente comune au fost desemnate valorile caracterizate prin

indici de linie si de coloana care sunt indentice in ambele matrice.

Pentru implementare s-a folosit suprascrierea operatorilor, tehnica ce
ofera o mai mare putere de sugestie operatiilor matriceale implementate. Este
prezentat in continuare operatorul care implementeaza operatia de adunare,
structurata conform pasilor prezentati mai sus.

MatriceRara MatriceRara::operator +(MatriceRara & MR)

{

/* se determina dimensiunea matricei rezultat */

// se simuleaza suma si se contorizeaza numarul
// de sume zero si numarul de sume nonzero

MatriceRara rezMR;

if((this->m!=MR.m)]| (this->n!1=MR_n))
return rezMR;

int nrsz = 0, nrsnz = 0;
inti =0, j =0;
while((i<this->dim)&&(J<MR.dim))

ifCthis—>linii[il<MR_LiniiJD

i++;
else
if(this->linii[i]>MR_1inii[j])
| R
else
if(this->coloane[i]<MR.coloane[]j])
i++;
else
if(this->coloane[i]>MR.coloane[j])
J++s
else
if(this->valori[i]+MR.valori[j])
{
nrsnz++;
i++;
3+
3
else
{
nrsz++;
i++;
Jt+;
3
3
int rezdim = this->dim+MR.dim-nrsnz-2*nrsz;
rezMR.dim = rezdim;
rezMR.m = this->m;
rezMR.n = this->n;

rezMR.coloane = new int[rezdim];
rezMR.liniil = new int[rezdim];
rezMR.valori = new double[rezdim];

// se determina suma elementelor
int k=i=j=0;

while((i<this->dim)&&(j<MR.dim))
{
if(this->linii[i]<MR_linii[j])
{
rezMR.linii[k] = this->linii[i];

rezMR.coloane[k] = this->coloane[i];
rezMR._valori[k] = this->valori[i];

i++;
k++;
}
else
if(this->linii[i]>MR_Linii[j])
{
rezMR.Linii[k] = MR_Linii[j];
rezMR._coloane[k] = MR.coloane[j];
rezMR.valori[k] = MR.valori[j];
k++;
3+t
}
else
if(this->coloane[1]<MR.coloane[j])
{
rezMR.Linii[K] = this->linii[i];
rezMR.coloane[k] = this->coloane[i];
rezMR._valori[k] = this->valori[i];
i++;
k++;
}
else
if(this->coloane[1]>MR.coloane[j])
{
rezMR_Linii[k] = MR_Linii[j];
rezMR.coloane[k] = MR.coloane[j];
rezMR_valori[k] = MR.valori[j];
k++;
3+
}
else

{
rezMR_linii[K]

= MR.Linii[j];
rezMR.coloane[k]

if(this->valori[i]+MR.valori[j])
M
= MR.coloane[j];

rezMR.valori[k] = this-
>valori[i]+MR.valori[]J];

k++;
3+
i++;

}

else

{ _
i++
j++

}

3}
if(i<this->dim)
for(;i<dim; i++,k++)
{
rezMR.linii[K] = this->linii[i];
rezMR.coloane[k] = this->coloane[i];
rezMR.valori[k] = this->valori[i];

ifg<MR.dim)
for(J<MR.dim;j++,k++)

{
rezMR.Linii[k] = MR_Linii[j];
rezMR.coloane[k] = MR.coloane[j];
rezMR.valori[k] = MR.valori[j];

}

return rezMR;

Pentru a minimiza numarul de parcurgeri ale celor doua matrice rare, in
acest caz sunt necesare doar doua parcurgeri, in metoda prezentata se
porneste de la ipoteza ca matricea rara este generata prin parcurgerea pe linii
a matricei initiale. Acest lucru asigura o ordine intre elementele matricei rare si
permite identificare mai eficienta a elementelor comune. De asemenea, este
implementata o parcurgere simultana a celor doua matrice. Elementele curente
din cele doua matrice sunt analizate in ordine prin prisma valorii liniei si a
coloanei. In cazul in care elementele se gasesc pe linii diferite, elementul care
are valoarea liniei mai mica este adaugat la rezultat si se trece la urmatorul
element din matricea respectiva. Daca elementele curente din cele doua
matrice prezinta aceeasi valoare pentru linie, atunci se compara valoarea
coloanelor. Pentru elementele comune, se analizeaza rezultatul sumei si se
memoreaza doar valorile nenule.

Implementarea operatorului de scadere este absolut similara celui de
adunare, singura diferenta fiind aceea ca in cazul elementelor comune se
calculeaza diferenta lor, in locul adunarii. O altd abordare, este data de
utilizarea sumei, negand anterior valorile matricei ce se scade. Prin utilizarea
operatorului MatriceRara MatriceRara::operator *(double valoare) ce permite
inmultirea matricei cu o valoare data, scaderea se realizeaza prin
supraincarcarea operatorului -.

MatriceRara MatriceRara::operator *(double valoare)

{

MatriceRara rezMR;
if(valoare)

rezMR = *this;

for(int 1=0;i<rezMR.dim;i++)
rezMR.valori[i]*=valoare;

}

return rezMR;

}

MatriceRara MatriceRara::operator -(MatriceRara &VR)

{
return ((*this)+(MR*-1));

Transpunerea matricelor rare, prin intermediul operatorului !, este
similara celei efectuate pe structura tablou, constédnd in inversarea indicilor de
linie si coloana intre ei.

MatriceRara MatriceRara::operator ')

{

MatriceRara rezMR= *this;

/* metoda transpune matricea */

for(int 1=0;i<dim;i++)

{
int temp = rezMR_linii[i];
rezMR_Linii[i] = rezMR.coloane[i];
rezMR.coloane[i] = temp;

}

return rezMR;

by

O altd metoda de a realiza transpunerea este datd de inversarea
pointerilor pentru masivele de intregi reprezentand liniile, respectiv coloanele
elementelor nenule

MatriceRara MatriceRara::operator ')

{
MatriceRara rezMR= *this;
int * temp = rezMR.coloane;
rezMR.coloane = rezMR.linii;
rezMR.linii = temp;
return rezMR;

b

6.6 Inmultirea si inversarea matricelor rare

Pentru inmultirea matricei rare A, (m, /) dimensionald, cu matricea rara
B, (I, n) dimensionala, se utilizeaza procedura standard, avand in vedere ca
metoda getValoareElement si operatorul (i,j) permit accesul direct la
elementele matricei rare.

Pentru a genera matricea rezultat, ca si in cazul operatiilor de adunare si
scadere, este nevoie sa se determine, anterior efectuarii produsului, numarul
de elemente ale rezultatului. Acest lucru se realizeaza prin simularea
produsului si contorizarea numarului de valori nenule.

MatriceRara MatriceRara::operator *(MatriceRara &MR)

{

MatriceRara rezMR;

if(this->n!=MR.m)
return rezMR;

/= se determina numarul de elemente ale rezultatului */
int rezdim=0;

for(int 1=0;i<this->m;i++)
for(int J=0;j<MR.n;j++)
{
double val = 0;
for(int k=0;k<this->n;k++)

{
val+=this->getValoareElement(i,k)*MR.getValoareElement(k,j);

if(val) rezdim++;

3
rezMR.dim = rezdim;
rezMR.m = this->m;
rezMR.n = MR.n;

rezMR.coloane = new int[rezdim];
rezMR.1inil = new int[rezdim];
rezMR.valori = new double[rezdim];

int 1 = 0;

for(i=0;i<this->m;i++)
for(int j=0;j<MR.n;j++)

double val = 0;
for(int k=0;k<this->n;k++)

val+=this->getValoareElement(i,k)*MR.getValoareElement(k,j);

}

if(val)

{
rezMR.Linki[I] =
rezMR.coloane[l] ;
rezMR.valori[l] = val;
1++;

}

return rezMR;

Prin analiza acestui operator se constata ca matricea rezultata pastreaza
structura de matrice rara.

Pentru implementarea operatorului de inversare s-a folosit algoritmul lui
Kralov. Acesta consta in parcurgerea unui numar de pasi egal cu dimensiunile
matricei:

1
1: Ay =A P, =itr(A1) B,=1-p,*A,

2: A, =A*B; P, :%tr(Az) BZ=I—p2* A
1

N-1: A1 = A*Bna Py =—1'[I’(An_1) Bra=1-Pi ™Ay
n_

n: A, = A* B; P, :itr(A) B,=1-p,*A,
n

Prin tr(A) se intelege urma matricei A, suma elementelor diagonale, iar I
reprezinta matricea unitate de aceeasi dimensiune cu matricea A. Aceste
elemente sunt implementate in clasa MatriceRara prin intermediul metodelor
Unitate(int) si Urma().

MatriceRara MatriceRara::Unitate(int n)

{

MatriceRara rezMR;

iT(n>0)
{
rezMR.n=rezMR.m=rezMR.dim = n;
rezMR.coloane = new int[n];
rezMR_linii = new int[n];
rezMR.valori = new double[n];

for(int 1=0;i<n;i++)

{
rezMR.coloane[i] = i;
rezMR_Linii[i] = i;
rezMR.valori[i] = 1;
b

return rezMR;

}

double MatriceRara::Urma(Q)

double rez = 0;
if(this->m==this->n)

{
for(int 1=0;i<this->m;i++)
rez+=this->getValoareElement(i,i);
}
return rez;
by

Kralov a demonstrat ca dupa parcurgerea celor n pasi, B, este o matrice
identic nula. De aici rezulta inversa matricei A:

AT = p, * By (6.36)

Se prezinta in continuare operatorul de inversare a matricelor rare care
implementeaza algoritmul prezent.

MatriceRara MatriceRara::Inversa()
{
MatriceRara tempMR, rezMR;
MatriceRara unitateMR = MatriceRara::Unitate(this->m);

MatriceRara initialaMR = *this;

if(initialaMR.m==initialaMR.n)

double p

= initialaMR_.Urma(Q ;
rezMR = initi

alaMR - (unitateMR*p);

for(int k=2;k<initialaMR.m;k++)

{
tempMR = initialaMR*rezMR;
p = (1.0/(double)k)*tempMR.Urma();
rezMR = tempMR - (unitateMR * p);
}

tempMR = initialaMR*rezMR;
p = (1.0/(double)k)*tempMR.Urma();
rezMR = rezMR*(1.0/p);

}

return rezMR;

Avantajele acestui algoritm constau in simplitatea implementarii si
precizia rezultatelor, datorata folosirii unui numar redus de operatii de
impartire.

6.7 Tipuri particulare de matrice rare

Exista tipuri de matrice rare ce prezintda o serie de caracteristici prin
prisma cdrora se pot defini noi metode de a stoca valorile matricei.

O astfel de matrice rara este matricea banda, in care valorile nenule
sunt pozitionate in mijlocul liniei. In cazul matricelor rare banda ce sunt
patratice, elemente utilizabile se grupeaza in jurul diagonalei principale sau
secundare. De exemplu, matricea de dimensiune (5,8) din figura 6.10 este o
matrice rara in care elementele nenule sunt grupate in jurul diagonalei.

9100 |0]0|0j0]O
0/7 |0 |[9/0/0]0]O0
0/0 |12/3|/0|/0|0 |0
0/0 |O |[3|3|0]0)0
0/0 |0 |0j0|5|/0]10

Figura 6.10 Matrice rara banda

Pe baza ipotezei ca elementele nenule sunt grupate pe linii in zone de
dimensiune redusa, se defineste o noua metodda de memorare a matricei
banda. Spre deosebire de abordarea compacta bazata pe cei trei vectori, in
aceasta situatie minimizarea memoriei ocupate se realizeaza prin reducerea
informatiilor necesare localizarii elementelor. Pentru fiecare linie se retine
indexul primei si ultimei valori din grupul de valori nenule. Figura 6.11 descrie
structura asociata matricei banda

0(1(2(3|5 index start grup in matrice

I_*

9|10/7|0(9(12/3(3|3|5(0 |10

314|7 index terminare grup

A 4

linia1l linia 2 linia 3 linia4 linia5
Figura 6.11 Model de stocare a matricei banda

Se observa ca pentru fiecare grup de valori nenule se retine prin
intermediul a doi vectori coloana primei valori nenule si coloana ultimei valori
nenule. Din acest motiv, vectorul de valori stocheaza si valorile nule cuprinse
in grup, fapt care conduce la pierderea eficientei metodei pe masura ce
matricea banda creste in latime.

Pentru exemplul considerat, aceasta metoda de stocare este mai
eficienta decat modelul compact. Daca se considera valorile ca fiind intregi,
nivelul de memorie necesar pentru datele matricei este egal cu

DMRbanda = DMindex_start+ DMindex_term+DMuyaiori = (5+ 5+ 12)*4 = 88 octeti (6.37)

unde:

DMindex_start — dimensiunea zonei de memorie asociata indexului de start;
DMindex term — dimensiunea zonei de memorie asociata indexului de terminare;
DMuyaiori - dimensiunea zonei de memorie asociata valorilor;

Aceeasi matrice stocata in forma compacta, necesita DMRompact = 3 * 12
* 4 = 144 octeti.

Din punctul de vedere al programatorului, aceasta abordare conduce la
definirea clasei MatriceBanda

class MatriceBanda

{

private:

int m,n; //dimensiunea matricei

int dim; //numarul de elemente nenule
int *index_start; //vector pentru index start

int *index_ term; //vector pentru index terminare
double *valori; //vector pentru valori

public:

MatriceBanda();

MatriceBanda(double **matrice, int m, int n);
MatriceBanda(const MatriceBanda&);
~MatriceBanda();

double getvaloare(int i, int j);}

Se observa ca pe langa informatiile descrise in figura 6.11 este necesar
sa se memoreze dimensiunea matricei banda si numarul de elemente nenule.
Pentru a parcurge vectorii index_start si index_term nu este nevoie de
informatii suplimentare, deoarece masivele au un numar de elemente egal cu
numarul de linii ale matricei.

Pentru a asigura programatorilor un nivel de transparenta la accesarea
directa a valorilor din matricea banda si pentru a trece peste bariera data de
structura interna a obiectului MatriceBanda se defineste metoda double
getValoare(int i, int j) ce permite afisarea valorii elementului de pe linia i si
coloana j.

double MatriceBanda::getValoare(int i, int j)

{
;f((i<0 Il i>=m) |1 @<0l1j>=n))
cerr<<"Index gresit 1'";
return O;
}
if((<this->index_start[i])]| >this->index_term[i]))
return O;
else
{
int index linie=0;
for(int k =0;k<i;k++)
index_linie+=(index_term[i]-index_start[i]+1);
return this->valori[index_linie+(J-index_start[i])];
}
>

Un alt caz de matrice rara particulara este matricea diagonala. Acest
masiv bidimensional este patratic si are elemente nenule doar pe diagonala
principala. Daca se considera matricea din figura 6.12

9/ 0/ 010
0|7, 010
0/0/10|0
0/]0] 0 |3

Figura 6.12 Matrice rara triunghiulara.

se defineste o metoda de reprezentare particulara ce se bazeaza pe
memorarea dimensiunii matricei si a valorilor de pe diagonala principala, clasa
MatriceDiagonala.

class MatriceDiagonala

{

private:
int n;
int *valori;

public:

MatriceDiagonala();
MatriceDiagonala(MatriceDiagonala&);
~MatriceDiagonala();

double getvaloare(int, int);

Pentru a accesa elementele matricei se implementeaza metoda double
getValoare(int, int).

double MatriceDiagonala::getValoare(int i, int j)

{
;f((i<0 Il i>=n) |l G<0l1i>=n))
cerr<<"lIndex gresit !';
return O;
}
if(il=j)
return O;
else
{
return this->valori[i];
}
}

Metoda returneaza valoare elementelor pentru care i este egal cu j,
celelalte elemente ale matricei avand valoarea zero.

Matricea diagonala este o matrice rara, deoarece o matrice patratica de
ordin n = 4, contine pe diagonala principala mai putin de 30% din valori.

Prin prisma matricei diagonale se observa ca matricea unitate, figura
6.13, reprezinta un caz special al acestui tip de matrice deoarece toate
elementele de pe diagonald au valoarea 1. Pentru a memora o matrice unitate
este nevoie sa se indice doar ordinul matricei, aceasta putand fi generata cu
usurinta.

Matricea triunghiulara reprezinta o matrice patratica in care toate
valorile aflate sub diagonala principala au valoarea 0. Pentru matricea

(n=1)*n
2

dimensiunea matricei patratice, iar raportul acestora in multimea de elemente

(n-1)
(n+1)

ponderea elementelor nenule nu este suficient de mica pentru a fi considerata
o matrice rara, acest tip de matrice are in functie de rangul sau un numar
destul de mare de elemente nenule pentru a fi acordata o atentie speciala
modului de stocare. De asemenea, proprietatile algebrice ale matricei
triunghiulare contribuie la alegerea acestui tip de matrice in rezolvarea
sistemelor de ecuatii compatibile cu acest tip de matrice:

triunghiulara numarul de elemente nenule este , unde n reprezinta

ale matricei, ia valori in intervalul [0,33 ; 1) pentru n = 2. Cu toate ca

- suma si diferenta dintre doua matrice triunghiulare reprezinta tot o
matrice triunghiulara;

- rezultatul inmultirii @ doua matrice triunghiulare de dimensiune egala
reprezinta tot o matrice triunghiulara;

- valoarea determinantului unei matrice triunghiulara este dat de
produsul elementelor de pe diagonala principala.

De exemplu, matricea triunghiulara din figura 6.13

2

O|ON|©

WINUT|W

3
0 1
0 10
0 0

Figura 6.13 Matrice triunghiulara

este stocata, prin memorarea intr-un masiv unidimensional a valorilor nenule
si prin indicarea indexului de inceput a valorilor de pe fiecare linie, figura 6.14.

0(4|7!|9 } index start linie in multime a
| de valori

\ 4 ; \ 4 \ 4
2|9(3(3|7(1(5|10/2 |3

- Al
Y

v
linia 1l linia2 linia3 linia 4

Figura 6.14 Model de stocare a matricei triunghiulare

Clasa MatriceTriunghiulara implementeaza aceasta solutie si defineste
metode de acces direct la elementele matricei.

class MatriceTriunghiulara

1

private:
int * linii; //indexul fiecarei linii in lista de valori
int n; //dimensiunea matricei patratice
double * valori; //valorile nenule din matrice

public:

MatriceTriunghiulara(Q);

MatriceTriunghiulara(int);

virtual ~MatriceTriunghiulara(Q);
MatriceTriunghiulara(const MatriceTriunghiulara&);

bool setValoare(int i, int j, double valoare);
double getvaloare(int i, int j);

double getDeterminant();
int getDimensiune(){return n;};

MatriceTriunghiulara operator+(MatriceTriunghiulara&);
MatriceTriunghiulara operator=(MatriceTriunghiulara&);

friend ostream& operator <<(ostream&, MatriceTriunghiularag&);

Constructorul implicit initializeaza o matrice triunghiulara vida, iar
constructorul cu parametrii primeste dimensiunea matricei patratice. Pentru
aceasta abordare, valorile nenule sunt introduse de la tastatura de catre
utilizator parcurgand matricea pe linii.

MatriceTriunghiulara: :MatriceTriunghiulara()

{
linii = NULL;
n = 0;
valori = NULL;
}
MatriceTriunghiulara::MatriceTriunghiulara(int dim)
if(dim)
{

this->n=dim;

linii = new int[n];

valori = new double[n*(n+1)/2];
int indexLinie=0;

for(int i=0;i<n;i++)

{
linii[i]=indexLinie;
for(int j=i;j<n;j++)
{
cout<<'\n Element ["<<i<<"]["'<<j<<"]:";
cin>>valori[indexLinie+j-i];
}
indexLinie+=n-i;
}
}
else
{
= 0;
Ilnii = NULL;
valori = NULL;
}

Constructorul de copiere al clasei si metoda ce supraincarca operatorul
= permit crearea de noi obiecte prin copierea valorilor unor matrice existent.
Diferenta dintre cele doua metode este data de situatia in care se apeleaza
fiecare metoda. Apelul operatorului = presupune existenta ambelor obiecte si
programatorul trebuie sa dezaloce zona de memorie a obiectului curent Tnainte
de a face initializarea.

MatriceTriunghiulara::MatriceTriunghiulara (const MatriceTriunghiulara&
MT)

itf(MT.n)
{
this->n=MT.n;
linii = new iInt[n];
valori = new double[n*(n+1)/2];
for(int i=0;i<n;i++)
Linti[i] = MT.linii[i];
for(int j=0;j<n*(n+1)/2;j++)
valori[j]=MT.valori[j];

}
else
{
n=0;
linii = NULL;
valori=NULL;
}
}
MatriceTriunghiulara MatriceTriunghiulara: :operator =
(MatriceTriunghiulara &MT)
{
if(n)
{
delete[] linii;
delete[] valori;
}
if(MT.n)
{
this->n=MT.n;
linii = new Int[n];
valori = new double[n*(n+1)/2];
for(int 1=0;i<n;i++)
Linti[i] = MT.linii[i];
for(int j=0;j<n*(n+1)/2;j++)
valori[j]=MT.valori[j];
}
else
{
n=0;
linii = NULL;
valori=NULL;
}
return *this;
by

Destructorul clasei gestioneaza dezalocarea zonei de memorie rezervata
de un obiect de tip MatriceTriunghiulara prin alocarea dinamica a spatiului
aferent celor doua masive linii si valori.

MatriceTriunghiulara::~MatriceTriunghiulara()
{

delete[] linii;

delete[] valori; }

Pentru a asigura accesul la elementele matricei, intr-un mod transparent
si apropiat cu abordarea directd data de sintaxa matrice[i][j], clasa
implementeaza metodele getValoare si setValoare pentru a returna valoarea
elementului de pe linia / si coloana j, respectiv, pentru a initializa elementul.

double MatriceTriunghiulara::getValoare(int i, int j)

{
}f((i<0 Il i>=n) || G<0l13>=n))
cerr<<"lIndex gresit !';
return O;
}
if(g<i)
return O;
else
return this->valori[linii[i]+j-i];
}
bool MatriceTriunghiulara::setValoare(int i, int j,double valoare)
{
(<0 || >=n) || <0l1i>=n))
return false;
iTg>=i)
{
valori[linti[i]+j-i]=valoare;
return true;
}
else
return false;
}

In cazul metodei getValoare se returneazd valoarea zero pentru orice
element pentru care valoarea j este mai mare decédt /i deoarece aceste
elemente se gasesc sub diagonala principala.

Metoda setValoare valideaza coordonatele elementului de initializat
deoarece nu este permisa setarea unui element al matricei ce se gaseste sub
diagonala principala, caz in care matricea isi pierde caracteristica de a fi
triunghiulara.

Pornind de la ipoteza ca suma a doua matrice triunghiulare genereaza o
matrice de acelasi tip, metoda care implementeaza aceasta operatie aritmetica
aduna elementele de pe pozitii comune fara a lua in considerare rezultatul
acestora si fara a lua in considerare valorile de sub diagonala.

MatriceTriunghiulara MatriceTriunghiulara: :operator + (
MatriceTriunghiulara& MT)
{
MatriceTriunghiulara rezMT;
if(this->n==MT.n)
{
rezMT.linii = new int[n];
rezMT.valori = new double[n];
rezMT .n=this->n;
for(int 1=0;i<n;i++)

rezMT.linii[i] = this->linii[i];
<

for(int J=0;j<n-i;j++)
{
rezMT.valori[rezMT.Linii[i]+j]=valori[linii[i]+j]+MT.valori[MT.Lini
ifil+il;
}
}
}

return rezMmT;

Pentru a calcula determinantul matricei triunghiulare, ipoteza de lucru
este data de faptul ca elementele de pe diagonala principald reprezinta prima
valoare de pe fiecare linie a matricei.

double MatriceTriunghiulara::getDeterminant(){
double determinant = 1;
for(int 1=0;i<n;i++)
determinant*=valori[linii[i]];
return determinant;

Matricea de permutare este un masiv bidimensional in care fiecare linie
sau coloana contine o singura valoare unu, in rest elementele fiind nule.
Matricea are aceasta denumire deoarece este utilizata in operatii algebrice
pentru a permuta elementele unui vector conform unui model stabilit anterior.
Daca se considera matricea MP din figura 6.15 si vectorul X = 1,2,3,4,5

oo+ |O|O
o~ Ol0O|Oo

o|Ooo—|O
ellelellell g
lelelle]le]

Figura 6.15 Matrice de permutare de ordin egal cu cinci

prin inmultirea X * MP se obtine vectorul XP = 3,4,2,1,5, fapt ce evidentiaza ca
elementele vectorului au fost rearanjate conform pozitionarii valorilor egale cu
unu in matrice de permutare.

Pentru a stoca o astfel de matrice, in care n elemente sunt egale cu unu,
restul fiind zero, se defineste clasa MatricePermutare.

class MatricePermutare

{
private:
int n; //ordinul matricei
int* index_coloane; //indexul coloanei
public:
MatricePermutare();

~MatricePermutare();

MatricePermutare(const MatricePermutare&);

3

Valorile memorate pentru a reprezenta corect matricea de permutare

sunt reprezentate de:

- rangul matricei patratice;

- indexul coloanei pe care se gaseste valoarea unu de pe fiecare linie;
deoarece exista o singura valoare nenuld pe fiecare linie si coloana,
pozitia wvalorii in cadrul vectorului index_coloane indica linia
corespondenta.

Figura 6.16 descrie vectorul index_coloane asociat matricei de permutare din
figura 6.15.

n = 5 —»ordinul matricei patratice

3/2|0(1|5

[

v
pe linia i = 2, valoarea 1 se gaseste pe
coloanaj=0

Figura 6.16 Model de stocare a matricei de permutare.

Intr-o matrice de permutare de ordin n, numérul de valori nenule este
egal cu n, iar in cazul in care aceasta valoare depaseste nivelul trei, matricea
este validata ca fiind o matrice rara datorita ponderii mici a valorilor nenule.

6.8 Estimarea parametrilor unei regresii statistice folosind
clasa MR

Se considera datele din tabelul 6.7 ce caracterizeaza cinci intreprinderi
din punctul de vedere al productivitatii y, al numarului de utilaje de mare
performanta detinute x; si al veniturilor suplimentare acordate salariatilor x..
Se doreste determinarea unei functii care sa caracterizeze dependenta dintre
productivitate si celelalte doua variabile considerate independente.

Tabelul nr. 6.7 Evolutia indicatorilor y, x; Si X, intr-o intreprindere

y - productivitatea muncii (cresteri procentuale) |12 |56 |7
x; — utilaje de mare randament (bucati) 21414145
X2 — venituri suplimentare (mil. lei) 1/1]3]5]|5

Pentru a specifica forma functiei, se analizeaza pe cale grafica
dependenta variabilei efect(y) in raport cu fiecare dintre variabilele cauzale.

- x1 . X2

A
A

Figura 6.17 Dependenta y= f(x1), y= f(xz2)

Intrucat norul de puncte din fiecare reprezentare graficd sugereazd o
linie dreapta, specificam modelul astfel:

yi=adao + aix1l; + a>x2; + u; (638)

unde u; reprezinta o variabilda “reziduala” ce caracterizeaza influenta altor
factori asupra variabilei efect y, factori care din diverse motive nu pot fi luati in
considerare.

Daca simbolizam "y ” valorile “ajustate”, rezultate in urma aplicarii

modelului liniar, specificam modelul astfel:

n ”

Y, =a, +a,Xy; + Xy (6.39)

Relatia anterioara se scrie pentru fiecare set de valori prezentate in
tabelul 6.7, rezultand:

A 1 x1, x2,) (& U,
1 x1, x2 a, u
Y, _ 2 2| | A | (6.40)
A A A A A A
Y, 1 x1, x2,) \a, u,

Asadar:
Y=XA+U (6.41)
iar
Y = XA (6.42)
Determinarea dependentei dintre variabila efect si variabilele cauza
a,,a

insemna determinarea valorilor numerice ale parametrilor 1 si 2. In acest

scop se utilizeaza metoda celor mai mici patrate. Aceasta metoda presupune
minimizarea expresiei:

Q.U
t

(6.43)

adica, matriceal, U'*U. Dar:
UU = (Y -XA) (Y-XA) 4 44)

unde prin U' s-a notat transpusa matricei U.
In [Peci94] se demonstreaza ca prin minimizarea relatiei de mai sus se
ajunge la expresia:

A=(XX)XY 6 45)

O determinare cat mai precisa a matricei parametrilor unei regresii
presupune existenta unui numar foarte mare de date, adica un numar mare de
linii Tn matricea X. In multe cazuri practice valorile acestor date sunt nule, fapt
ce justifica implementarea relatiei anterioare pe o structura de matrice rare.
Avand deja definiti operatorii de transpunere, inmultire si inversare,
implementarea relatiei de mai sus presupune scrierea unei singure linii de cod:

A =(((1X)*X))Inversa()* (1X)*Y (6.46)

Asadar, pentru aflarea matricei A sunt necesare doud operatii de
transpunere, trei inmultiri si o inversare. Matricele X si Y asupra carora se
opereaza au in multe dintre cazurile practice o densitate foarte mica, astfel ca
este pe deplin justificata folosirea unor structuri de memorare specifice
matricelor rare.

Asistam in prezent la un fenomen care tinde sa atinga tot mai multe
domenii de activitate. Necesitatea de a cunoaste cat mai precis anumiti
factori sau parametri ce caracterizeaza domeniul respectiv, care pana nu de
mult erau fie considerati aleatori, fie nu se punea problema determinarii lor,
considerata a fi imposibila. Cunoasterea acestor factori ofera o descriere mai
detaliata a sistemului in care se lucreaza, permitand in acest fel o mai buna
activitate de control si comanda a acestuia.

In cele mai multe dintre cazuri baza de calcul a acestor factori o
constituie statistica matematica si teoria probabilitatilor, ceea ce conduce la
necesitatea rezolvarii unor probleme liniare de foarte mari dimensiuni.
Caracterul de raritate al structurilor implicate in rezolvarea problemelor,
datorat caracteristicilor reale ale sistemelor, la care se adauga necesitatea unei
rezolvari rapide, in concordantd cu dinamica crescanda a sistemelor actuale,
justifica pe deplin introducerea in aplicatiile informatice asociate a unor
structuri de date adaptate acestor particularitati.

Softul orientat spre lucrul cu matrice rare exploateaza caracterul de
raritate al structurilor manipulate, oferind un dublu avantaj: memorie si timp.
In ultimii ani memoria nu mai constituie o problema, insa timpul necesar
calculelor, odata cu aparitia sistemelor in timp real, se dovedeste a fi tot mai
mult o resursa critica.

Referitor la lucrul cu matrice in general, in cadrul unui sistem in care
timpul reprezinta o resursa critica, exista posibilitatea de a realiza un soft care
sa faca o evaluare anterioara calculelor asupra densitatii matricei, si, in functie
de aceasta, sa decida asupra structurilor de date ce vor fi folosite pentru
memorare si efectuarea calculelor, astfel incat timpul afectat calculelor sa fie
minim.

	6. MATRICE RARE
	6.1 Concepte de bază
	6.2 Memorarea matricelor rare
	6.3 Determinarea gradului de umplere al unei matrice rare
	6.4 Software orientat spre lucrul cu matrice rare
	6.5 Adunarea, scăderea şi transpunerea
	6.6 Înmulţirea şi inversarea matricelor rare
	6.7 Tipuri particulare de matrice rare
	6.8 Estimarea parametrilor unei regresii statistice folosind clasa MR

