
6. MATRICE RARE 
 
 
6.1 Concepte de bază 
  
 Matricele rare îşi găsesc aplicabilitatea în modelarea unor procese de 

natură industrială, economică, tehnică, socială etc. Capitolul de faţă îşi 
propune să trateze modalităţile de reprezentare în structuri de date a 
matricelor rare, precum şi principalele operaţii matriceale implementate într-un 
limbaj orientat pe obiecte. În final este prezentată o aplicaţie concretă – 
estimarea parametrilor unei regresii statistice. 

În rezolvarea multor probleme de natură economică, tehnică, socială, a 
diverselor probleme de optimizare, precum şi în modelarea unor procese 
industriale şi tehnologice este necesar să se determine modelul matematic care 
descrie funcţionarea procesului respectiv. Descrierea acestor sisteme fizice 
conduce la obţinerea unor modele matematice care fie în mod direct, prin 
modelare, fie prin metoda de rezolvare implică sisteme de ecuaţii algebrice 
liniare sau probleme de programare liniară a căror matrice a coeficienţilor este 
rară (sparse), în sensul că ponderea elementelor nenule în totalul elementelor 
matricei este mică. 

 Din punct de vedere practic trebuie remarcat faptul că analiza sistemelor 
mai sus amintite conduce la obţinerea unor modele matematice de mari 
dimensiuni care implică sisteme de ecuaţii algebrice liniare de mii de ecuaţii, 
pentru a căror rezolvare sunt necesare resurse mari de memorie şi timp de 
calcul. În multe cazuri practice, cum sunt sistemele în timp real, timpul de 
calcul este o resursă critică, nefiind permis să depăşească o valoare limită. 

Modelele matematice ale proceselor reale implică un număr foarte mare 
de variabile şi restricţii care prezintă fenomenul de raritate ,sparsity, adică o 
slabă interconectare a elementelor sale. Luarea în consideraţie a fenomenului 
de raritate furnizează un nou mod de abordare foarte eficient, ce implică în 
dezvoltarea aplicaţiilor informatice folosirea unor structuri de date speciale, 
care să conducă la reducerea resurselor de memorie şi a timpului de calcul. 

În general, o matrice - dimensională este rară atunci când conţine 

un număr mic de elemente nenule 

),( nn

 , adică . Cantitativ, matricele rare 
sunt caracterizate de ponderea numărului de elemente nenule în totalul de 
elemente, pondere ce defineşte gradul de umplere al matricei. În aplicaţiile 
curente se întâlnesc matrice rare cu grade de umplere între 0,15% şi 3%. 
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6.2 Memorarea matricelor rare 
  
Se consideră matricea: 
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Matricea A este un exemplu de matrice rară, ea conţinând 16 elemente 

nule din totalul de 20. 
Se defineşte gradul de umplere, densitatea, unei matrice prin raportul 

dintre numărul elementelor nenule şi numărul total al elementelor sale: 
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unde:  
p  – numărul de elemente nenule; 
n  – numărul de linii; 
m  – numărul de coloane. 

În general se acceptă că o matrice este rară dacă densitatea sa este de 
cel mult 3%. Densitatea matricei A este %20)( AG , ea fiind prezentată aici în 
scopul ilustrării conceptului de matrice rară. 

 Structura de date clasică folosită pentru manipularea matricelor, tabloul 
de dimensiune (n, m) alocat la compilare, se dovedeşte a fi ineficientă în cazul 
în care matricea este rară. Un prim avantaj este legat de folosirea 
neeconomică a spaţiului de memorie prin alocarea de zone mari pentru 
memorarea elementelor nule, care nu sunt purtătoare de informaţie. Ocuparea 
unor zone de memorie cu elemente nule nu se justifică deoarece acestea nu 
contribuie la formarea rezultatului operaţiilor cu matrice, adunare, înmulţire 
etc., conducând totodată şi la mărirea duratei de realizare a acestor operaţii 
prin ocuparea procesorului cu adunări şi înmulţiri scalare cu zero. Acest 
inconvenient se manifestă cu atât mai pregnant cu cât dimensiunea matricei 
este mai mare. 

 Prin urmare, pentru probleme de dimensiuni mari, s-a căutat găsirea 
unor modalităţi de reprezentare compactă a matricelor rare, în care să se 
renunţe la memorarea elementelor nule. În acest caz este necesar ca tehnicile 
de memorare să încorporeze pe lângă elementele nenule şi mijloacele de 
identificare a poziţiilor acestor elemente în matrice. 

 Sunt prezentate în continuare câteva posibilităţi de memorare compactă 
a matricelor rare MR. Se face, de asemenea, o analiză a oportunităţii folosirii 
fiecărei tehnici în parte, în funcţie de densitatea matricei. 

 Memorarea prin identificare binară se bazează pe natura binară a 
sistemului de calcul, constând în memorarea numai a elementelor nenule ale 



matricei într-o zonă primară ZP având tipul de bază corespunzător tipului 
elementelor matricei şi dimensiunea egală cu numărul elementelor nenule. 

Structura matricei este indicată printr-o secvenţă binară memorată într-
o zonă secundară ZS. 

 Matricea A prezentată anterior se memorează astfel: 
Zona primară: 
 

Locaţie 1 2 3 4 
Valoare 1 -2 4 -1 

  
Figura 6.1 Structura ZP pentru matricea A 

 
Zona secundară: 
 

Locaţie 1                                5 6                                 10 
Valoare 1 0 0 0 0 0 0 1 0 1 
Locaţie 11                            15 16                                20 
Valoare 0 0 0 0 0 0 1 0 0 0 
 

Figura 6.2 Structura ZS pentru matricea A 
 
 Matricea A a fost memorată în ordinea liniilor, o altă posibilitate de 

memorare fiind în ordinea coloanelor. Pentru a reduce  spaţiul ocupat de zona 
secundară se poate implementa soluţia dată de memorarea la nivel de bit a 
valorilor acesteia. 

 Dacă matricea B cu dimensiunea (m, n) are densitatea G şi dacă tipul de 
bază al matricei, respectiv tipul fiecăruia dintre elemente nenule ale matricei, 
este reprezentat printr-un cuvânt de b octeţi, atunci zona primară va necesita 
m*n*G cuvinte de b octeţi iar zona secundară (m*n)/(8*b) cuvinte. Numărul 
total de cuvinte necesare memorării matricei B prin intermediul celor două 
zone este  
 

DMR1 = m*n*G + (m*n)/(8*b) (6.3) 
 
Întrucât pentru memorarea matricei în forma clasică sunt necesare DM = m*n 
cuvinte, raportul dintre cerinţele de memorie ale structurii de mai sus şi a celei 
standard este: 
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În relaţia anterioară s-a considerat că memorarea zonei secundare se 

face la nivel de bit. 
 Considerând că elementele matricei A sunt reale şi se reprezintă pe 4 

octeţi, rezultă: 
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ceea ce indică că memorarea matricei A conform acestei structuri ocupă de 
aproximativ patru ori mai puţină memorie decât cea standard. 

Egalând  se determină limita superioară a densităţii unei matrice 
pentru care această structură necesită mai puţină memorie decât cea 
standard: 

11 c
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 Pentru matricea A: 
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 Această structură de memorare diferă de abordări prin faptul că în zona 

secundară este alocată memorie şi pentru elementele nule ale matricei. 
Structura este mai puţin eficientă pentru matricele de mari dimensiuni foarte 
rare. Principala dificultate constă în complexitatea programelor de 
implementare a operaţiilor matriciale. 

 O altă modalitate de memorare prin identificare binară se obţine prin 
modificarea informaţiilor din zona secundară. Această zonă va conţine pe 
jumătăţi de cuvânt indicii de coloană a elementelor nenule din matrice, precum 
şi anumite informaţii de control pentru identificarea rapidă a poziţiei 
elementelor nenule în matrice. Structura ZS pe cuvinte este următoarea: 

 
Tabelul nr. 6.1 Structura ZS pe cuvinte 

 
Numărul 

cuvântului 
Jumătatea stângă Jumătatea dreaptă 

 
1 Numărul de linii Numărul de coloane 
2 Numărul de elemente nenule 
3 Numărul de elemente nenule 

în linia 1 
Numărul de elemente nenule 

în linia 2 
4 Numărul de elemente nenule 

în linia 3 
Numărul de elemente nenule 

în linia 4 
… … … 
k Numărul de elemente nenule 

în linia m-1 
Numărul de elemente nenule 

în linia m 
k + 1 Indicele de coloană al 

primului element memorat 
Indicele de coloană al celui 

de-al doilea element 
memorat 

k + 2 Indicele de coloană al celui 
de-al treilea element 

etc. 



memorat 
… … … 
j … Indicele de coloană al 

ultimului element memorat 
 
Pentru matricea A, zona secundară ZS are structura din figura 6.3. 
 

Locaţie 1 2 3 4 5 6 
Valoare 4 5 4 1 2 0 1 1 3 5 2 

 
Figura 6.3 Structura ZS pentru matricea A 

 
În reprezentarea din figura 6.3 s-a considerat că elementele nenule sunt 

reprezentate pe 4 octeţi astfel că o jumătate de cuvânt în zona secundară se 
reprezintă pe 2 octeţi. Prin structura de memorare prezentată mai sus se 
memorează matrice a căror dimensiune maximă este de 9999 de linii sau 
coloane cu numărul maxim de elemente nenule memorate egal cu 108 – 1. Se 
face observaţia că în cazul matricelor pătrate în primul cuvânt din ZS se va 
memora dimensiunea matricei. 

Numărul total de cuvinte necesare zonei secundare este egal cu 
 

2/)**5( Gnmm    (6.8) 
 
valoarea fiind rotunjită la cel mai mare întreg. Numărul total de cuvinte 
necesar memorării unei matrice prin intermediul celor două zone ZP şi ZS este 
egal cu  
 

DMR2 = 2/)***35( Gnmm    (6.9) 
 
Raportul dintre cerinţele de memorie ale acestei structuri de identificare 

binară şi a celei standard este: 
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 Pentru o matrice pătrată (m=n), egalând c2 = 1 şi trecând la limită 

pentru  rezultă valoarea maximă a densităţii unei matrice rare pentru 
care structura prezentată este eficientă: 
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 În relaţia anterioară se ajunge la acelaşi rezultat în cazul unei matrice 

nepătratică pentru care se trece la limită pentru n  şi . m
 Pentru o matrice rară de dimensiune (100, 100), cu o medie de 66 

elemente nenule pe linie, structura de mai sus necesită un total de 6600 + (5 
+ 100 + 6600)/2 = 9952 cuvinte, cu 0,6% mai puţin decât 10.000 cuvinte 



necesare pentru memorarea standard. Întrucât densitatea elementelor nenule 
ale unei matrice rare este de obicei între 1% şi 3%. Structura se dovedeşte a fi 
deosebit de eficientă. 

 Memorarea compactă aleatoare constă în utilizarea unei zone primare 
ZP, conţinând numai elementele nenule ale matricei şi a două zone secundare 
conţinând indicii de linie şi de coloană corespunzătoare elementelor nenule. 

 Deoarece fiecare element nenul al matricei este identificat individual, 
este posibil ca matricea să fie memorată în ordine aleatoare. Matricea A se 
memorează astfel: 

 
Locaţia 1 2 3 4 
Valoare 1 -2 4 -1 
Indice linie 1 2 2 4 
Indice coloană 1 3 5 2 

 
Figura 6.4 Model de memorare compactă aleatoare a matricei A 

 
 Avantajele memorării compacte aleatoare constau în faptul că noile 

elemente nenule ale matricei sunt adăugate la sfârşitul zonelor de memorare 
fără a afecta celelalte elemente, precum şi o manevrabilitate rapidă a datelor. 
În cazul matricelor simetrice această structură de memorare este simplificată 
prin memorarea numai a elementelor nenule de deasupra diagonalei principale, 
precum şi a elementelor nenule situate pe această diagonală. 

 Numărul total de cuvinte necesare memorării unei matrice de 
dimensiune (m, n) este în acest caz  
 

DMR3 = 3*m*n (6.12) 
 

Raportul dintre cerinţele de memorie ale acestei structuri şi a celei 
standard este: 

 
  33 Gc   (6.13) 

 
Egalând relaţia anterioară cu unitatea se determină valoarea limită a 

densităţii matricei rare pentru care această structură este eficientă, 
. %3,33lim G

 În structura din figura 6.4, pentru identificarea elementelor nenule ale 
matricei rare au fost folosite două zone secundare corespunzătoare indicelui de 
linie şi de coloană. Se prezintă în continuare o altă posibilitate de memorare în 
care se va utiliza o singură zonă secundară de dimensiune egală cu numărul de 
elemente nenule ale matricei, conţinând simultan informaţii asupra indicilor de 
linie şi de coloană. 

 Astfel, fiecărui element din zona primară i se ataşează în zona secundară 
un număr întreg din care se determină indicii de linie şi de coloană. Dacă 
elementul  este memorat în locaţia k a zonei primare atunci în zona 

secundară se va memora un indice agregat ig a cărui valoare este dată de 
relaţia 

0ija



 
ig = i+(j-1)*n  (6.14) 

 
unde n este numărul de coloane a matricei. Acest număr este suficient pentru 
identificarea elementului în matrice. 

 Utilizând acest artificiu, matricea A se memorează astfel: 
 

Locaţia 1 2 3 4 
Valoare 1 -2 4 -1 
Indice agregat, ig 1 12 22 9 

 
Figura 6.5 Model derivat de memorare compactă a matricei A 

 
Pentru a regăsi indicele de linie şi de coloană al oricărui element 

memorat în locaţia k se utilizează următoarea tehnică de calcul: 
- coloana j este obţinută prin relaţia: 
 

j    ig(k)/n (6.15) 
 
- linia i este determinată prin relaţia: 
 

i = ig(k) – ( j – 1 ) n (6.16) 
 
 Avantajul acestei structuri de memorare constă în faptul că necesită mai 

puţină memorie decât cea precedentă, fiind în schimb mai puţin rapidă în ce 
priveşte manevrarea datelor. 

 Numărul total de cuvinte necesar memorării matricei este  
 

DMR4 = 2*m*n*G (6.17) 
 

Raportul dintre cerinţele de memorie ale acestei structuri şi a celei 
standard este: 

  
Gc 24   (6.18) 

 
 Valoarea limită a densităţii matricei pentru care această structură este 

eficientă este G = 50%. 
 Memorarea compactă sistematică presupune că elementele nenule ale 

unei matrice rare sunt memorate într-o anumită ordine, respectiv pe linii sau 
pe coloane. În acest caz nu este necesar să se memoreze în zonele secundare 
indicii de linie, respectiv de coloană. Pentru o memorare în ordinea liniilor, ne 
mai sunt necesari indicii de linie, însă se cere specificarea începutului fiecărei 
linii. 

 Şi în acest caz există mai multe structuri de memorare. Cea prezentată 
în continuare este caracterizată prin faptul că utilizează o singură zonă 
secundară ZS, care conţine indicii de coloană ale elementelor nenule din 
matricea considerată, precum şi elemente false care indică începutul fiecărei 
linii şi sfârşitul memorării întregii matrice. De exemplu, un element zero în ZS 



marchează prezenţa unui element fals şi acesta specifică în ZP numărul liniei 
elementelor de la dreapta locaţiei. Sfârşitul matricei este marcat prin prezenţa 
în ZP a unui element fals cu valoarea zero. 

 Pentru matricea A, memorarea în această formă este următoarea: 
 

Locaţia 1 2 3 4 5 6 7 8 
ZP 1 1 2 -2 4 4 -1 0 
ZS 0 1 0 3 5 0 2 0 

 
Figura 6.6 Model de memorare compactă sistematică a matricei A 
 
 Pentru această structură de memorare numărul maxim de cuvinte 

necesar pentru a reţine o matrice rară de dimensiune (m, n) este 
 

DMR5 = 2*(m*n*r+m+1)  (6.19) 
 
Raportul de memorare este: 
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Se constată că structura este eficientă pentru memorarea matricelor 

rare cu o densitate a elementelor nenule de maximum 50%. 
 Memorarea cu ajutorul listelor reprezintă o extensie a memorării 

compacte aleatoare. În timpul operaţiilor de inversare a matricelor rare, noi 
elemente nenule sunt continuu generate, iar altele sunt anulate şi deci 
structurile de memorare trebuie să fie capabile să execute aceste modificări 
într-un mod eficient. De aceea structurile de memorare bazate pe această 
tehnică sunt folosite pentru memorarea şi manipularea matricelor rare de mari 
dimensiuni. 

 Structura propusă utilizează o zonă principală ZP pentru memorarea 
elementelor nenule şi trei zone secundare:  

 
ZSL  – memorarea indicilor de linie ale elementelor nenule; 
ZSC  – indicii de coloană;  
ZSU  – memorarea adresei următorului element al matricei.  

 
Matricea A se memorează după cum urmează: 
 

Locaţia 1 2 3 4 
ZP 1 -2 4 -1 
ZSL 1 2 2 4 
ZSC 1 3 5 2 
ZSU &2 &3 &4 NULL 

 
Figura 6.7 Model de memorare cu ajutorul listelor a matricei A 

 



unde prin “&2” se înţelege adresa celei de-a doua locaţii. 
 Raportul dintre cerinţele de memorare ale acestei structuri şi a celei 

standard este: 
 

  *46 Gc   (6.21) 

 
 Prin urmare această structură de memorare este eficientă pentru 

memorarea matricelor cu o densitate a elementelor nenule de maximum 25%. 
 
 

6.3 Determinarea gradului de umplere al unei matrice rare 
 
Pentru a deduce dacă o matrice este sau nu rară, se defineşte gradul de 

umplere al unei matrice, notat cu p. În cazul în care p < 0,3*m*n, se 
consideră că matricea este rară. 

Problema matricelor rare comportă două abordări: 
- abordarea statică, în care alocarea memoriei se efectuează în faza de 

compilare; aceasta presupune ca programatorul să cunoască cu o precizie 
bună numărul maxim al elementelor nenule; 

- abordarea dinamică, în care alocarea se efectuează în timpul execuţiei, caz 
în care nu este necesară informaţia asupra numărului de elemente nenule; 
această abordare este dezvoltată în partea destinată listelor. 

Memorarea elementelor matricei rare, presupune memorarea indicelui 
liniei, a indicelui coloanei şi, respectiv, valoarea nenulă a elementului. 

Se consideră matricea: 
 





















00280

09000

00007

00600

A  (6.22) 

 
Gradul de umplere al matricei A cu numărul de linii m = 4, numărul de 

coloane, n= 5 şi numărul elementelor nenule k = 5 este: 
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Se definesc 3 vectori: 

lin [ ]   – memorează poziţia liniei ce conţine elemente nenule; 
col [ ]   – memorează poziţia coloanei ce conţine elemente nenule; 
val [ ]   – memorează valoarea nenulă a elementelor. 

 
Vectorii se iniţializează cu valorile: 



 
Tabelul nr. 6.2 Valorile iniţiale ale vectorilor LIN, COL şi VAL 

 
LIN COL VAL 
1 3 6 
2 1 7 
3 4 9 
4 2 8 
4 3 2 

 
Pentru efectuarea calculelor cu matrice rare definite în acest fel, un rol 

important îl au vectorii LIN, COL, iar pentru matricele rare rezultat se definesc 
vectori cu un număr de componente care să asigure şi stocarea noilor 
elemente ce apar. 

Astfel, pentru adunarea matricelor rare definite prin: 
 

Tabelul nr. 6.3 Valorile matricei rare A 
 

LIN_A COL_A VAL_A 
1 1 -4 
2 2 7 
4 4 8 

 
şi 

Tabelul nr. 6.4 Valorile matricei rare B 
 

LIN_B COL_B VAL_B 
1 1 4 
2 2 -7 
3 2 8 
4 1 5 
4 3 6 

  
rezultatul final se stochează în vectorii: 

 
Tabelul nr. 6.5 Valorile matricei rare rezultat C 

 
LIN_C COL_C VAL_C 

1 1 0 
2 2 0 
3 2 8 
4 1 5 
4 3 6 
4 4 8 
? ? ? 
? ? ? 



  
Vectorii LIN_C, COL_C şi VAL_C au un număr de componente definite, 

egal cu: 
 

DIM (LIN_A) + DIM (LIN_A) (6.24) 
 

unde DIM() este funcţia de extragere a dimensiunii unui masiv unidimensional: 
Astfel, dacă: 
 

int a[n-m];    (6.25) 
 

atunci: 
 

DIM (a) = n - m+1  (6.26) 
 
Fiind abordată problematica matricelor rare, în mod natural se produce 

eliminarea elementelor nenule, obţinându-se în final: 
  

Tabelul nr. 6.6 Conţinutul final al matricei rare C 
 

LIN_C COL_C VAL_C 
3 2 8 
4 1 5 
4 3 6 
4 4 8 
? ? ? 
? ? ? 
? ? ? 
? ? ? 

 
Prin secvenţe de program adecvate, se face diferenţa între definirea unui 

masiv bidimensional şi componentele iniţializate ale acestora, cu care se 
operează pentru rezolvarea unei probleme concrete. Din punct de vedere al 
nivelului de umplere, tabelul 6.6 descrie o matrice rară cu un grad de umplere 
egal cu 
 

G = 
32

12
*100 = 37.5 % (6.27) 

 
Situaţia evidenţiază ineficienţă în utilizarea spaţiului de memorie alocat. 

De exemplu, vectorii LIN_A şi LIN_B au 3, respectiv 5 componente în 
utilizare, dar la definire au rezervate zone de  memorie ce corespund pentru 
câte 10 elemente.  Rezultă că vectorul LIN_C trebuie definit cu 20 componente 
încât să preia şi cazul în care elementele celor două matrice rare au poziţii 
disjuncte.  

Din punct de vedere al criteriului minimizării spaţiului ocupat, această 
abordare nu este eficientă deoarece presupune în cele mai multe situaţii 



alocarea de spaţiu care nu este utilizat. Pentru a atinge acest obiectiv, 
implementarea unei clase asociate matricei rare va defini vectori alocaţi 
dinamic, iar operaţiile aritmetice vor genera vectori rezultat cu grad de 
umplere egal cu 100%. 

În cazul operaţiilor de înmulţire sau inversare, este posibil ca matricele 
rezultat să nu mai îndeplinească cerinţa de matrice rară. 

În acest scop, se efectuează calculele cu matrice rezultat complet 
definite şi numai după efectuarea calculelor se analizează gradul de umplere şi 
dacă acesta este redus, se trece la reprezentarea matricei complete ca matrice 
rară. 

Funcţiile full( ) şi rar( ), au rolul de a efectua trecerea la matricea 
completă, respectiv la matricea rară. 

Funcţia full( ) conţine secvenţa: 
 

for( i = 0; i < n; i++)   
       a [LIN_a[i]] [COL_a[i]] = val_a[i]; 

 
ce descrie iniţializarea elementelor matricei pe baza valorilor din vectori, iar 
funcţia rar( ) conţine secvenţa: 

 
k =1; 
for( i = 0; i < m; i++)   
    for( j = 0; j < n; j++)   
        if (a[i][j] != 0)  

{ 
      LIN_a[k] = i; 
      COL_a[k] = j; 
      val_a[k] = a[i][j]; 
      k = k + i; 

} 

 
În cazul în care gradul de umplere nu este suficient de mic astfel încât 

matricea să fie considerată rară, pentru memorare se utilizează o structură 
arborescentă care conţine pe nivelul al doilea poziţiile elementelor nenule, iar 
pe nivelul al treilea valorile. 

Astfel matricei: 
 





















18986

50900

08420

00537

A  (6.28) 

 
îi corespunde reprezentarea din figura 6.8. 
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Figura 6.8 Model grafic al matricei A 

 
Se elaborează convenţii asupra modului de stabilire a lungimii 

vectorului de poziţii, fie prin indicarea la început a numărului de componente 
iniţializate, fie prin definirea unui simbol terminal.  

De asemenea. în cazul considerat s-a adoptat convenţia ca liniile 
complete să fie marcate cu simbolul -1, fără a mai specifica poziţiile 
elementelor nenule, care sunt de fapt termenii unei progresii aritmetice. 

Liniarizarea masivelor bidimensionale conduce la ideea suprapunerii 
acestora peste vectori. Deci, punând în corespondenţă elementele unei matrice 
cu elementele unui vector, se pune problema transformării algoritmilor, în aşa 
fel încât operând cu elementele vectorilor să se obţină rezultate corecte pentru 
calcule matriceale. 

Astfel, considerând matricea: 
 


















1514131211

109876

54321

A  (6.29) 

 
prin punerea în corespondenţă cu elementele vectorului b, să se obţină 
interschimbul între două coloane oarecare k şi j ale matricei. 

 
a00 a01 a02 a03 a04 a10 a11  a20 a21 a22 a23 a24 
1 2 3 4 5 6 7 … 11 12 13 14 15 
b0 b1 b2 b3 b4 b5 b6  b10 b11 b12 b13 b14 

 
Figura 6.9 Punerea în corespondenţă a matricei A cu vectorul b 

 
Dacă matricea are M linii şi N coloane şi elemente de tip int, atunci 

adresa elementului a[i][j] este dată de relaţia 
 

adr(a[i][j]) =  adr(a[0][0] ) + ( (i-0 ) * N+j ) * 1g(int) (6.30) 
 

iar din modul  în care se efectuează punerea în corespondenţă a matricei A cu 
vectorul b, rezultă: 

 



adr(b[0]) = adr(a[0][0])    (6.31) 
 

Pentru o matrice liniarizată, adresa elementului a[i][j] în cadrul vectorului este 
dată de relaţia 

 
adr(a[i][j])  =  adr(b[0] )+( (i-0) * N+j ) * lg(int) =  adr(b[(i-0) * N+j]) (6.32)  

 
Dacă se consideră problema interschimbării valorilor coloanelor j şi k pentru 

o matrice liniarizată atunci secvenţa de înlocuire a coloanelor 
 

for( i = 0; i < M; i++)   
{ 

c = a[i][j]; 
a[i][j] = a[i][k]; 
a[i][k] = c; 

} 

 
este înlocuită prin secvenţa: 

 
for( i = 0; i < M; i++)   
{ 
      c = b[(i-0) * N+j]; 
      b [(i-0) * N+j] = b[(i-0) * N+k]; 
      b[(i-0) * N+k] = c; 
}   

 
Transformarea algoritmilor de lucru cu masive bidimensionale în 

algoritmi de lucru cu masive unidimensionale este benefică deoarece nu se mai 
impune cerinţa de transmitere ca parametru a dimensiunii efective a numărului 
de linii, dacă liniarizarea se face pe coloane, respectiv a numărului de coloane, 
dacă liniarizarea se face pe linii. 

În cazul matricelor rare, aceeaşi problemă revine la interschimbarea 
valorilor de pe coloana a treia dintre elementele corespondente ale coloanelor 
k şi j cu posibilitatea inserării unor perechi şi, respectiv, ştergerii altora. 

Pentru generalizare, un masiv n-dimensional rar, este reprezentat prin n 
+ 1 vectori, fiecare permiţând identificarea coordonatelor elementului diferit de 
zero, iar ultimul stocând valoarea acestuia. 

În cazul în care se construieşte o matrice booleană ce se asociază 
matricei rare, o dată cu comprimarea acesteia se dispun elementele nenule 
într-un vector. Punerea în corespondenţă a elementelor vectorului are loc în 
acelaşi moment cu decomprimarea matricei booleene şi analiza acesteia. 

De exemplu, matricei : 
 





















000965

071000

000033

040008

A  (6.33) 



 
se asociază matricea booleană: 

 





















000111

011000

000011

010001

B  (6.34) 

 
care prin compactare, ocupă  primii 3 octeţi ai unei  descrieri, urmaţi de 
componentele vectorului: 

 
C = ( 8, 4, 3, 3, 1, 7, 5, 6, 9) (6.35) 

 
Compactarea este  procedeul care asociază un bit fiecărei cifre din forma 

liniarizată a matricei B. 
 
 
6.4 Software orientat spre lucrul cu matrice rare 
  
Metodele de calcul cu matrice rară pentru a fi eficiente trebuie să 

beneficieze de proporţia mare de elemente nule din aceste matrice, ceea ce 
creează necesitatea considerării unor tehnici speciale de memorare, 
programare şi analiză numerică. 

 O cerinţă esenţială în programarea matricelor rare constă în memorarea 
şi executarea operaţiilor numerice numai cu elementele nenule ale matricei, de 
a salva memorie şi timp de calcul. În acest caz memorarea standard, devenind 
ineficientă, este abandonată şi înlocuită cu metode de memorare adecvate, 
câteva dintre acestea fiind prezentate în paragraful anterior. 

 Un program de calcul cu matrice rare este cu atât mai eficient cu cât 
timpul de calcul şi cerinţele de memorie necesare sunt mai reduse faţă de 
acelea ale unui program tradiţional. De aceea, tehnica de programare trebuie 
să realizeze o proporţie convenabilă între timpul de calcul şi memoria utilizată, 
cerinţe care de cele mai multe ori sunt contradictorii. În general, este 
recunoscută necesitatea unei anumite de structuri de memorare a datelor şi o 
anumită tehnică de manipulare a acestora în cadrul unui algoritm în care sunt 
implicate matricele rare.  

Principiul fundamental de programare cu matrice rare constă în 
memorarea şi manipularea numai a elementelor nenule, de sortare şi ordonare 
în structuri speciale în vederea menţinerii structurii de matrice rară şi a 
stabilităţii numerice, de evitare a buclelor complete. 

 În scopul ilustrării principalelor operaţii efectuate asupra matricelor rare 
s-a făcut implementarea acestora în C++, utilizând mediul de programare 
Visual C++. Pentru reprezentarea matricelor s-a ales memorarea compactă 
aleatoare, datorită flexibilităţii în manevrarea datelor. Este prezentată în 
continuare o parte a clasei MatriceRara, conţinând constructorii, destructorul, 
câteva dintre funcţiile şi operatorii implementaţi şi secţiunea privată. 

 



class MatriceRara 
{ 
/*******************************/ 
/*       Atribute              */ 
/*******************************/ 
private: 
 long dim;   //numarul de elemente nenule 
 int m,n;   //dimensiunea matricei 
 int * coloane;  //vectorul pentru index coloane 
 int * linii;  //vectorul pentru index linii 
 double * valori;  //vectorul pentru valori 
 
/*******************************/ 
/* Constructor & Destructor    */ 
/*******************************/ 
public: 
 MatriceRara(void); 
 MatriceRara(const MatriceRara & MR); 
 MatriceRara(int M, int N, int D, double *val, int *lin, int *col); 
 MatriceRara(double **matrice, int M, int N); 
 virtual ~ MatriceRara( ); 
 
/*******************************/ 
/* Metode auxiliare    */ 
/*******************************/ 
public: 
 bool EsteRara(); 
 static MatriceRara Unitate(int); 
 double Urma(); 
double ** GetMatrice(); 
 
/*******************************/ 
/* Metode de acces   */ 
/*******************************/ 
public: 
 inline int getDim(); 
 inline int getLinii(); 
 inline int getColoane(); 
 inline double getValoareElement(int i); 
 inline int getColoanaElement(int i); 
 inline int getLinieElement(int i); 
 
 double getValoareElement(int i,int j); 
 bool setValoareElement(int i,int j, int valoare); 
 double operator ()(int i, int j); 
 
 friend ostream& operator <<(ostream&, MatriceRara &); 
friend istream& operator >>(istream&, MatriceRara &); 
 
/*******************************/ 
/* Metode de prelucrare     */ 
/*******************************/ 
 
 void Sortare(); 
 MatriceRara operator =(MatriceRara &); 
 MatriceRara operator +(MatriceRara &); 
 MatriceRara operator -(MatriceRara &); 



 MatriceRara operator *(MatriceRara &); 
 MatriceRara operator *(double); 
 MatriceRara operator !(); 
 MatriceRara Inversa(); 
}; 

 
În cadrul secţiunii private sunt definite următoarele atribute: 
 

m,n  – dimensiunea matricei iniţiale; 
dim  – numărul de elemente nenule; 
coloane  – pointer la masive de întregi reprezentând coloana elementelor 

nenule; 
linii – pointer la masive de întregi reprezentând linia elementelor nenule; 
valori – pointer la un masiv având tipul de bază al elementelor matricei. 

 
 Aplicaţia informatică realizată vizează principalele operaţii necesare 

manipulării matricelor rare:  
- construirea acestora prin introducerea datelor de la tastatură; acest 

obiectiv este atins prin supraîncărcarea operatorului >> prin rutina 
 
istream& operator >>(istream& intrare, MatriceRara &MR) 
{ 
 if(MR.dim) 
 { 
  delete[] MR.coloane; 
  delete[] MR.linii; 
  delete[] MR.valori; 
 } 
 cout<<"\n Numarul de linii ale matricei:";intrare>>MR.m; 
 cout<<"\n Numarul de coloane ale matricei:";intrare>>MR.n; 
 cout<<"\n Numarul de elemente nenule:";intrare>>MR.dim; 
 MR.coloane = new int[MR.dim]; 
 MR.linii = new int[MR.dim]; 
 MR.valori = new double[MR.dim]; 
 for(int i=0;i<MR.dim;i++) 
 { 
  cout<<"\n Valoare a "<<i+1<<"-a este:"; 
  cout<<"\n\t Linia:";intrare>>MR.linii[i]; 
  cout<<"\n\t Coloana:";intrare>>MR.coloane[i]; 
  cout<<"\n\t Valoare:";intrare>>MR.valori[i]; 
 } 
 return intrare; 
} 

 
- vizualizarea matricelor rare prin intermediul operatorului >>; 

 
ostream& operator <<(ostream& iesire, MatriceRara & MR) 
{ 
 iesire<<"\n Matricea rara de dimensiune ("<< 
  MR.m<<","<<MR.n<<") este:"; 
 for(int k=0;k<MR.dim;k++) 
  iesire<<"\n element["<< 
  MR.linii[k]<<"]["<<MR.coloane[k]<<"] - "<<MR.valori[k]; 



 
 iesire<<"\n Vizualizare normala :\n"; 
 for(int i=0;i<MR.m;i++) 
 { 
  for(int j = 0;j<MR.n;j++) 
   iesire<<"\t"<<MR.getValoareElement(i,j); 
  iesire<<"\n"; 
 } 
 return iesire; 
} 

 
- prin intermediul constructorilor clasei este posibilă crearea unei 

matrice rare iniţială fără valori, sau a unei matrice ce preia valorile 
dintr-o colecţie de trei vectori sau dintr-o matrice normală ce este 
validată  
 

/*****************************/ 
/*  Constructori             */ 
/*****************************/ 
MatriceRara::MatriceRara(void):m(0),n(0),dim(0) 
{ 
 coloane=NULL; 
 linii=NULL; 
 valori=NULL; 
} 
 
MatriceRara::MatriceRara(int M, int N, int D, double *val, int *lin, int 
*col) 
{ 
 m=M; 
 n=N; 
 dim = D; 
 if(dim) 
 { 
  coloane = new int[dim]; 
  linii = new int[dim]; 
  valori = new double[dim]; 
  for(int i=0;i<dim;i++) 
  { 
   coloane[i] = col[i]; 
   linii[i] = lin[i]; 
   valori[i] = val[i]; 
  } 
 } 
 else 
 { 
  coloane = linii = NULL; 
  valori = NULL; 
 } 
 
} 
MatriceRara::MatriceRara(double **matrice, int M, int N) 
{ 
 /* validare matrice rara */ 
 int nenule = 0; 



 for(int i=0;i<M;i++) 
  for(int j=0;j<N;j++) 
   if(matrice[i][j]) nenule++; 
 if(((nenule*100)/(M*N))>100) 
 { 
  /* matricea nu este rara */ 
  coloane = linii = NULL; 
  valori = NULL; 
  m = n = dim = 0; 
 } 
 else 
 { 
  /* matricea este rara */ 
  coloane = new int[nenule]; 
  linii = new int[nenule]; 
  valori = new double[nenule]; 
  m = M; 
  n = N; 
  dim = nenule; 
 
  int k=0; 
  for(i=0;i<M;i++) 
   for(int j=0;j<N;j++) 
    if(matrice[i][j]) 
    { 
     coloane[k]= j; 
     linii[k] = i; 
     valori[k] = matrice[i][j]; 
     k++; 
    } 
 } 
} 

 
- clasa permite copierea valorilor între diferite obiecte de tip 

MatriceRara prin intermediul constructorului de copiere şi a 
operatorului =; 

 
/*****************************/ 
/*  Copy constructor         */ 
/*****************************/ 
 
MatriceRara::MatriceRara(const MatriceRara &MR) 
{ 
 dim = MR.dim; 
 m = MR.m; 
 n = MR.n; 
 
 if(dim) 
 { 
  coloane = new int[dim]; 
  linii = new int[dim]; 
  valori = new double[dim]; 
  for(int i=0;i<dim;i++) 
  { 
   coloane[i] = MR.coloane[i]; 
   linii[i] = MR.linii[i]; 



   valori[i] = MR.valori[i]; 
  } 
 } 
 else 
 { 
  coloane = linii = NULL; 
  valori = NULL; 
 } 
} 
 
MatriceRara MatriceRara::operator =(MatriceRara & MR) 
{ 
 if(dim) 
 { 
  delete[] coloane; 
  delete[] linii; 
  delete[] valori; 
 } 
 dim = MR.dim; 
 m = MR.m; 
 n = MR.n; 
 if(dim) 
 { 
  coloane = new int[dim]; 
  linii = new int[dim]; 
  valori = new double[dim]; 
  for(int i=0;i<dim;i++) 
  { 
   coloane[i] = MR.coloane[i]; 
   linii[i] = MR.linii[i]; 
   valori[i] = MR.valori[i]; 
  } 
 } 
 else 
 { 
  coloane = linii = NULL; 
  valori = NULL; 
 } 
 return *this; 
} 

 
- pentru a asigura gestiunea eficientă a memoriei aplicaţiei se 

implementează destructorul clasei care asigură eliberarea memoriei 
rezervate de cele trei masiv de date; 

 
/*****************************/ 
/*  Desstructor              */ 
/*****************************/ 
MatriceRara::~MatriceRara() 
{ 
 delete[] coloane; 
 delete[] linii; 
 delete[] valori; 
} 

 



- principalele operaţii matriceale: adunarea, scăderea, transpunerea, 
înmulţirea şi inversarea. 

  
Pe parcursul dezvoltării clasei MatriceRara s-a dovedit necesară 

implementarea unei funcţii bool MatriceRara::EsteRara(), care să verifice dacă 
o matrice este rară.  

 
bool MatriceRara::EsteRara() 
 { 
  if(((dim*100)/(n*m)>30)) return false; 
  else return true; 
 } 

 
În urma prelucrării matricelor şi prin generarea unor obiecte noi ca 

rezultate ale prelucrărilor aritmetice există situaţii în care matricea îşi pierde 
caracteristica de a fi rară. Pentru a implementa soluţii software eficiente, este 
indicat ca modul de stocare a matricei să fie ales în funcţie de nivelul de 
memorie ocupat. Prin validarea matricei rare cu metoda EsteRara(), datele pot 
fi stocate sub formă de matrice normală prin intermediul metodei double ** 
GetMatrice() 

 
double** MatriceRara::GetMatrice() 
{ 
 double **matrice=NULL; 
 matrice = new double*[m]; 
 for(int k=0;k<m;k++) 
  matrice[k] = new double[n]; 
 for(int i=0;i<m;i++) 
  for(int j=0;j<n;j++) 
  { 
   matrice[i][j]=0; 
  } 
 for(i=0;i<this->dim;i++) 
  matrice[linii[i]][coloane[i]]=valori[i]; 
 return matrice; 
} 

 
Produsul implementează metoda void Sortare() ce permite rearanjarea 

valorilor din matricea rară astfel încât acestea să corespundă unui mode de 
aranjare bazat pe parcurgerea pe linii a matricei. Această condiţie reprezintă o 
ipoteză de start în derularea operaţiilor aritmetice de adunare, scădere şi 
înmulţire deoarece contribuie la obţinerea unei metode de prelucrare mai 
eficiente din punctul de vedere al efortului procesor. 

 
void MatriceRara::Sortare() 
{ 
 /* metoda rearanjeaza elementele dupa linii */ 
 bool flag = true; 
 while(flag) 
  { 
  flag = false; 
  for(int i=0;i<dim-1;i++) 



   if(linii[i]>linii[i+1]) 
   { 
    int temp = linii[i]; 
    linii[i] = linii[i+1]; 
    linii[i+1] = temp; 
    temp = coloane[i]; 
    coloane[i] = coloane[i+1]; 
    coloane[i+1] = temp; 
    double valoaretemp = valori[i]; 
    valori[i] = valori[i+1]; 
    valori[i+1] = valoaretemp; 
    flag = true; 
   } 
   else 
    if(linii[i]==linii[i+1]) 
     if(coloane[i]>coloane[i+1]) 
     { 
      int temp = coloane[i]; 
      coloane[i] = coloane[i+1]; 
      coloane[i+1] = temp; 
      double valoaretemp = valori[i]; 
      valori[i] = valori[i+1]; 
      valori[i+1] = valoaretemp; 
      flag = true; 
     } 
 
  } 
} 

 
Pentru a permite accesul programatorilor la atributele matricei rare, sunt 

implementate o serie de metode care returnează valorile acestor caracteristici. 
 
/*******************************/ 
/*  Metode de acces   */ 
/*******************************/ 
int MatriceRara::getDim(){ return this->dim;} 
int MatriceRara::getLinii(){ return this->m;} 
int MatriceRara::getColoane(){ return this->n;} 
double MatriceRara::getValoareElement(int i){ return valori[i];} 
int MatriceRara::getColoanaElement(int i){ return coloane[i];} 
int MatriceRara::getLinieElement(int i){ return linii[i];} 

 
Metodele de prelucrare a unei matrice sunt bazate pe algoritmi în care 

accesul la elementele matricei se realizează direct prin intermediul sintaxei 
matricei[i][j]. Din punct de vedere al structurii interne, modelul ales în clasa 
MatriceRara pentru implementarea unei matrice rare diferă de abordarea 
clasică a masivului bidimensional. Pentru a permite programatorilor, într-un 
mod transparent, accesul direct la elementele matricei se definesc metodele:  

 
double MatriceRara::getValoareElement(int i, int j) 
{ 
 for(int k=0;k<dim;k++) 
  if((linii[k]==i)&&(coloane[k]==j)) return valori[k]; 
 return 0; 



} 
 
bool MatriceRara::setValoareElement(int i, int j, int valoare) 
{ 
 /* metoda valideaza noua valoare */ 
 if(valoare) return false; 
 
 for(int k=0;k<dim;k++) 
  if((coloane[k]==i)&&(linii[k]==j)) 
  { 
   valori[k]=valoare; 
   return true; 
  } 
 return false; 
} 
 
double MatriceRara::operator ()(int i, int j) 
{ 
 return this->getValoareElement(i,j); 
} 

 
 În subcapitolele următoare se face o prezentare detaliată a operatorilor 

care implementează principalele operaţii matriceale: adunarea, scăderea, 
transpunerea, înmulţirea şi inversarea. 

 
 
6.5 Adunarea, scăderea şi transpunerea 
  
Prin prisma caracterului dinamic al modului de alocare a memoriei şi a 

caracteristicilor unice ale matricelor rare, adunarea acestor structuri de date 
presupune parcurgerea unei serii paşi: 

- determinarea numărului de elemente nenule ale matricei sumă; din 
punctul de vedere al operanzilor sunt definite două situaţii de 
realizare a sumei, cu elemente comune şi cu elemente distincte; în 
cazul sumei a două elemente comune, se verifică dacă suma acestora 
este zero, caz în care rezultatul  nu este reţinut în matricea rară 
generată;  

- alocarea memoriei corespunzătoare acestui număr pentru cele trei 
masive unidimensionale; 

- parcurgerea celor două matrice pe linii sau pe coloane şi 
determinarea sumei. 

Prin elemente comune au fost desemnate valorile caracterizate prin 
indici de linie şi de coloană care sunt indentice în ambele matrice. 

Pentru implementare s-a folosit suprascrierea operatorilor, tehnică ce 
oferă o mai mare putere de sugestie operaţiilor matriceale implementate. Este 
prezentat în continuare operatorul care implementează operaţia de adunare, 
structurată conform paşilor prezentaţi mai sus.  

 
MatriceRara MatriceRara::operator +(MatriceRara & MR) 
{ 
 /* se determina dimensiunea matricei rezultat */ 



  
 // se simuleaza suma si se contorizeaza numarul 
 // de sume zero si numarul de sume nonzero 
 
 MatriceRara rezMR; 
 
 if((this->m!=MR.m)||(this->n!=MR.n)) 
  return rezMR; 
 
 int nrsz = 0, nrsnz = 0; 
 int i = 0, j = 0; 
 while((i<this->dim)&&(j<MR.dim)) 
 { 
  if(this->linii[i]<MR.linii[j]) 
   i++; 
  else 
   if(this->linii[i]>MR.linii[j]) 
    j++; 
   else 
    if(this->coloane[i]<MR.coloane[j]) 
     i++; 
    else 
     if(this->coloane[i]>MR.coloane[j]) 
      j++; 
     else 
      if(this->valori[i]+MR.valori[j]) 
      { 
       nrsnz++; 
       i++; 
       j++; 
      } 
      else 
      { 
       nrsz++; 
       i++; 
       j++; 
      } 
 } 
 
 int rezdim = this->dim+MR.dim-nrsnz-2*nrsz; 
 rezMR.dim = rezdim; 
 rezMR.m = this->m; 
 rezMR.n = this->n; 
 
 rezMR.coloane = new int[rezdim]; 
 rezMR.linii = new int[rezdim]; 
 rezMR.valori = new double[rezdim]; 
 
 // se determina suma elementelor 
 
 int k=i=j=0; 
 
 while((i<this->dim)&&(j<MR.dim)) 
 { 
  if(this->linii[i]<MR.linii[j]) 
  { 
   rezMR.linii[k] = this->linii[i]; 



   rezMR.coloane[k] = this->coloane[i]; 
   rezMR.valori[k] = this->valori[i]; 
   i++; 
   k++; 
  } 
 
  else 
   if(this->linii[i]>MR.linii[j]) 
   { 
    rezMR.linii[k] = MR.linii[j]; 
    rezMR.coloane[k] = MR.coloane[j]; 
    rezMR.valori[k] = MR.valori[j]; 
    k++; 
    j++; 
   } 
   else 
    if(this->coloane[i]<MR.coloane[j]) 
    { 
     rezMR.linii[k] = this->linii[i]; 
     rezMR.coloane[k] = this->coloane[i]; 
     rezMR.valori[k] = this->valori[i]; 
     i++; 
     k++; 
    } 
    else 
     if(this->coloane[i]>MR.coloane[j]) 
     { 
      rezMR.linii[k] = MR.linii[j]; 
      rezMR.coloane[k] = MR.coloane[j]; 
      rezMR.valori[k] = MR.valori[j]; 
      k++; 
      j++; 
     } 
     else 
      if(this->valori[i]+MR.valori[j]) 
      { 
      rezMR.linii[k] = MR.linii[j]; 
      rezMR.coloane[k] = MR.coloane[j]; 
      rezMR.valori[k] = this-
>valori[i]+MR.valori[j]; 
       k++; 
       j++; 
       i++; 
      } 
      else 
      { 
       i++; 
       j++; 
      } 
 } 
 if(i<this->dim) 
  for(;i<dim;i++,k++) 
  { 
   rezMR.linii[k] = this->linii[i]; 
   rezMR.coloane[k] = this->coloane[i]; 
   rezMR.valori[k] = this->valori[i]; 
  } 



 if(j<MR.dim) 
  for(;j<MR.dim;j++,k++) 
  { 
   rezMR.linii[k] = MR.linii[j]; 
   rezMR.coloane[k] = MR.coloane[j]; 
   rezMR.valori[k] = MR.valori[j]; 
  } 
 
 return rezMR; 
} 

 
Pentru a minimiza numărul de parcurgeri ale celor două matrice rare, în 

acest caz sunt necesare doar două parcurgeri, în metoda prezentată se 
porneşte de la ipoteza că matricea rară este generată prin parcurgerea pe linii 
a matricei iniţiale. Acest lucru asigură o ordine între elementele matricei rare şi 
permite identificare mai eficientă a elementelor comune. De asemenea, este 
implementată o parcurgere simultană a celor două matrice. Elementele curente 
din cele două matrice sunt analizate în ordine prin prisma valorii liniei şi a 
coloanei. În cazul în care elementele se găsesc pe linii diferite, elementul care 
are valoarea liniei mai mică este adăugat la rezultat şi se trece la următorul 
element din matricea respectivă. Dacă elementele curente din cele două 
matrice prezintă aceeaşi valoare pentru linie, atunci se compară valoarea 
coloanelor. Pentru elementele comune, se analizează rezultatul sumei  şi se 
memorează doar valorile nenule. 

Implementarea operatorului de scădere este absolut similară celui de 
adunare, singura diferenţă fiind aceea că în cazul elementelor comune se 
calculează diferenţa lor, în locul adunării. O altă abordare, este dată de 
utilizarea sumei, negând anterior valorile matricei ce se scade. Prin utilizarea 
operatorului MatriceRara MatriceRara::operator *(double valoare) ce permite 
înmulţirea matricei cu o valoare dată, scăderea se realizează prin 
supraîncărcarea operatorului -. 

 
MatriceRara MatriceRara::operator *(double valoare) 
{ 
 MatriceRara rezMR; 
 if(valoare) 
 { 
 rezMR = *this; 
 for(int i=0;i<rezMR.dim;i++) 
  rezMR.valori[i]*=valoare; 
 } 
 return rezMR; 
} 
MatriceRara MatriceRara::operator -(MatriceRara &MR) 
{ 
 return ((*this)+(MR*-1)); 
} 

 
 Transpunerea matricelor rare, prin intermediul operatorului !, este 

similară celei efectuate pe structură tablou, constând în inversarea indicilor de 
linie şi coloană între ei.  

 



MatriceRara MatriceRara::operator !() 
{ 
 MatriceRara rezMR= *this; 
 /* metoda transpune matricea */ 
 for(int i=0;i<dim;i++) 
 { 
  int temp = rezMR.linii[i]; 
  rezMR.linii[i] = rezMR.coloane[i]; 
  rezMR.coloane[i] = temp; 
 } 
 return rezMR; 
} 

 
O altă metodă de a realiza transpunerea este dată de inversarea 

pointerilor pentru masivele de întregi reprezentând liniile, respectiv coloanele 
elementelor nenule 

 
MatriceRara MatriceRara::operator !() 
{ 
  MatriceRara rezMR= *this; 
  int * temp = rezMR.coloane; 
  rezMR.coloane = rezMR.linii; 
  rezMR.linii = temp; 
  return rezMR; 
} 

 
 
6.6 Înmulţirea şi inversarea matricelor rare 
 
Pentru înmulţirea matricei rare A, (m, l) dimensională, cu matricea rară 

B, (l, n) dimensională, se utilizează procedura standard, având în vedere că 
metoda getValoareElement şi operatorul (i,j) permit accesul direct la 
elementele matricei rare.  

Pentru a genera matricea rezultat, ca şi în cazul operaţiilor de adunare şi 
scădere, este nevoie să se determine, anterior efectuării produsului, numărul 
de elemente ale rezultatului. Acest lucru se realizează prin simularea 
produsului şi contorizarea numărului de valori nenule. 

 
MatriceRara MatriceRara::operator *(MatriceRara &MR) 
{ 
 MatriceRara rezMR; 
 
 if(this->n!=MR.m) 
  return rezMR; 
 
 /* se determina numarul de elemente ale rezultatului */ 
 int rezdim=0; 
 
 for(int i=0;i<this->m;i++) 
  for(int j=0;j<MR.n;j++) 
  { 
   double val = 0; 
   for(int k=0;k<this->n;k++) 



   { 
  val+=this->getValoareElement(i,k)*MR.getValoareElement(k,j); 
   } 
   if(val) rezdim++; 
  } 
 
 rezMR.dim = rezdim; 
 rezMR.m = this->m; 
 rezMR.n = MR.n; 
 
 rezMR.coloane = new int[rezdim]; 
 rezMR.linii = new int[rezdim]; 
 rezMR.valori = new double[rezdim]; 
 
 int l = 0; 
 
 for(i=0;i<this->m;i++) 
  for(int j=0;j<MR.n;j++) 
  { 
   double val = 0; 
   for(int k=0;k<this->n;k++) 
   { 
  val+=this->getValoareElement(i,k)*MR.getValoareElement(k,j); 
   } 
   if(val) 
   { 
    rezMR.linii[l] = i; 
    rezMR.coloane[l] = j; 
    rezMR.valori[l] = val; 
    l++; 
   } 
  } 
 
 return rezMR; 
} 

 
Prin analiza acestui operator se constată că matricea rezultată păstrează 

structura de matrice rară. 
 Pentru implementarea operatorului de inversare s-a folosit algoritmul lui 

Krâlov. Acesta constă în parcurgerea unui număr de paşi egal cu dimensiunile 
matricei: 
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Prin tr(A) se înţelege urma matricei A, suma elementelor diagonale, iar I 

reprezintă matricea unitate de aceeaşi dimensiune cu matricea A. Aceste 
elemente sunt implementate în clasa MatriceRară prin intermediul metodelor 
Unitate(int) şi Urma(). 

 
MatriceRara MatriceRara::Unitate(int n) 
{ 
 MatriceRara rezMR; 
 if(n>0) 
  { 
  rezMR.n=rezMR.m=rezMR.dim = n; 
  rezMR.coloane = new int[n]; 
  rezMR.linii = new int[n]; 
  rezMR.valori = new double[n]; 
 
  for(int i=0;i<n;i++) 
  { 
   rezMR.coloane[i] = i; 
   rezMR.linii[i] = i; 
   rezMR.valori[i] = 1; 
  } 
   
  } 
 return rezMR; 
} 
 
double MatriceRara::Urma() 
{ 
 double rez = 0; 
 if(this->m==this->n) 
 { 
  for(int i=0;i<this->m;i++) 
   rez+=this->getValoareElement(i,i); 
 } 
 return rez; 
} 

 
 Krâlov a demonstrat că după parcurgerea celor n paşi, Bn este o matrice 

identic nulă. De aici rezultă inversa matricei A: 
 

A-1 = pn * Bn-1  (6.36) 
 
 Se prezintă în continuare operatorul de inversare a matricelor rare care 

implementează algoritmul prezent. 
 
MatriceRara MatriceRara::Inversa() 
{ 
 MatriceRara tempMR, rezMR; 
 
 MatriceRara unitateMR = MatriceRara::Unitate(this->m); 
  
 MatriceRara initialaMR = *this; 
 



 if(initialaMR.m==initialaMR.n) 
 { 
  double p = initialaMR.Urma() ; 
  rezMR = initialaMR - (unitateMR*p); 
   
  for(int k=2;k<initialaMR.m;k++) 
  { 
   tempMR = initialaMR*rezMR; 
   p = (1.0/(double)k)*tempMR.Urma(); 
   rezMR = tempMR - (unitateMR * p); 
  } 
 
  tempMR = initialaMR*rezMR; 
  p = (1.0/(double)k)*tempMR.Urma(); 
  rezMR = rezMR*(1.0/p); 
 
 } 
 return rezMR; 
} 

 
Avantajele acestui algoritm constau în simplitatea implementării şi 

precizia rezultatelor, datorată folosirii unui număr redus de operaţii de 
împărţire. 

 
 
6.7 Tipuri particulare de matrice rare 
 
Există tipuri de matrice rare ce prezintă o serie de caracteristici prin 

prisma cărora se pot defini noi metode de a stoca valorile matricei. 
O astfel de matrice rară este matricea bandă, în care valorile nenule 

sunt poziţionate în mijlocul liniei. În cazul matricelor rare bandă ce sunt 
pătratice, elemente utilizabile se grupează în jurul diagonalei principale sau 
secundare. De exemplu, matricea de dimensiune (5,8) din figura 6.10 este o 
matrice rară în care elementele nenule sunt grupate în jurul diagonalei.  

 
9 10 0 0 0 0 0 0 
0 7 0 9 0 0 0 0 
0 0 12 3 0 0 0 0 
0 0 0 3 3 0 0 0 
0 0 0 0 0 5 0 10 

 
Figura 6.10 Matrice rară bandă 

 
Pe baza ipotezei că elementele nenule sunt grupate pe linii în zone de 

dimensiune redusă, se defineşte o nouă metodă de memorare a matricei 
bandă. Spre deosebire de abordarea compactă bazată pe cei trei vectori, în 
această situaţie minimizarea memoriei ocupate se realizează prin reducerea 
informaţiilor necesare localizării elementelor. Pentru fiecare linie se reţine 
indexul primei şi ultimei valori din grupul de valori nenule. Figura 6.11 descrie 
structura asociată matricei bandă 
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Figura 6.11 Model de stocare a matricei bandă 

 
Se observă că pentru fiecare grup de valori nenule se reţine prin 

intermediul a doi vectori coloana primei valori nenule şi coloana ultimei valori 
nenule. Din acest motiv, vectorul de valori stochează şi valorile nule cuprinse 
în grup, fapt care conduce la pierderea eficienţei metodei pe măsură ce 
matricea bandă creşte în lăţime. 

Pentru exemplul considerat, această metodă de stocare este mai 
eficientă decât modelul compact. Dacă se consideră valorile ca fiind întregi, 
nivelul de memorie necesar pentru datele matricei este egal cu  

 
DMRbanda = DMindex_start+DMindex_term+DMvalori = (5 + 5 + 12)*4 = 88 octeţi (6.37) 
 
unde: 
DMindex_start – dimensiunea zonei de memorie asociată indexului de start; 
DMindex_term – dimensiunea zonei de memorie asociată indexului de terminare; 
DMvalori – dimensiunea zonei de memorie asociată valorilor; 
 

Aceeaşi matrice stocată în forma compactă, necesită DMRcompact = 3 * 12 
* 4 = 144 octeţi. 

Din punctul de vedere al programatorului, această abordare conduce la 
definirea clasei MatriceBanda 

 
class MatriceBanda 
{ 
private: 
 int m,n;   //dimensiunea matricei 
 int dim;   //numarul de elemente nenule 
 int *index_start;  //vector pentru index start 
 int *index_term;  //vector pentru index terminare 
 double *valori;  //vector pentru valori 
   
public: 
 MatriceBanda(); 
 MatriceBanda(double **matrice, int m, int n); 
 MatriceBanda(const MatriceBanda&); 
 ~MatriceBanda(); 
  
 double getValoare(int i, int j);} 

 



Se observă că pe lângă informaţiile descrise în figura 6.11 este necesar 
să se memoreze dimensiunea matricei bandă şi numărul de elemente nenule. 
Pentru a parcurge vectorii index_start şi index_term nu este nevoie de 
informaţii suplimentare, deoarece masivele au un număr de elemente egal cu 
numărul de linii ale matricei. 

Pentru a asigura programatorilor un nivel de transparenţă la accesarea 
directă a valorilor din matricea bandă şi pentru a trece peste bariera dată de 
structura internă a obiectului MatriceBanda se defineşte metoda  double 
getValoare(int i, int j) ce permite afişarea valorii elementului de pe linia i şi 
coloana j. 

 
double MatriceBanda::getValoare(int i, int j) 
{ 

 if((i<0 || i>=m) || (j<0||j>=n)) 
 { 
  cerr<<"Index gresit !"; 
  return 0; 
 } 
 if((j<this->index_start[i])||(j>this->index_term[i])) 
  return 0; 
 else 
 { 
  int index_linie=0; 
  for(int k =0;k<i;k++) 
   index_linie+=(index_term[i]-index_start[i]+1); 
  return this->valori[index_linie+(j-index_start[i])]; 
 } 

} 

 
Un alt caz de matrice rară particulară este matricea diagonală. Acest 

masiv bidimensional este pătratic şi are elemente nenule doar pe diagonala 
principală. Dacă se consideră matricea din figura 6.12 

 
9 0 0 0 
0 7 0 0 
0 0 10 0 
0 0 0 3 

 
Figura 6.12 Matrice rară triunghiulară. 

 
se defineşte o metodă de reprezentare particulară ce se bazează pe 
memorarea dimensiunii matricei şi a valorilor de pe diagonala principală, clasa 
MatriceDiagonala. 
 
class MatriceDiagonala 
{ 
private: 
 int n; 
 int *valori; 
 
public: 



 MatriceDiagonala(); 
 MatriceDiagonala(MatriceDiagonala&); 
 ~MatriceDiagonala(); 
 … 
 double getValoare(int, int); 
}; 

 
Pentru a accesa elementele matricei se implementează metoda double 

getValoare(int, int). 
 
double MatriceDiagonala::getValoare(int i, int j) 
{ 
 if((i<0 || i>=n) || (j<0||j>=n)) 
 { 
  cerr<<"Index gresit !"; 
  return 0; 
 } 
 if(i!=j) 
  return 0; 
 else 
 { 
  return this->valori[i]; 
 } 
} 

 
Metoda returnează valoare elementelor pentru care i este egal cu j, 

celelalte elemente ale matricei având valoarea zero. 
Matricea diagonală este o matrice rară, deoarece o matrice pătratică de 

ordin n ≥ 4, conţine pe diagonala principală mai puţin de 30% din valori. 
 
Prin prisma matricei diagonale se observă că matricea unitate, figura 

6.13, reprezintă un caz special al acestui tip de matrice deoarece toate 
elementele de pe diagonală au valoarea 1. Pentru a memora o matrice unitate 
este nevoie să se indice doar ordinul matricei, aceasta putând fi generată cu 
uşurinţă. 

 
Matricea triunghiulara reprezintă o matrice pătratică în care toate 

valorile aflate sub diagonala principală au valoarea 0. Pentru matricea 

triunghiulara numărul de elemente nenule este 
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dimensiunea matricei pătratice, iar raportul acestora în mulţimea de elemente 

ale matricei, 
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n
 ia valori în intervalul [0,33 ; 1) pentru n ≥ 2. Cu toate că 

ponderea elementelor nenule nu este suficient de mică pentru a fi considerată 
o matrice rară, acest tip de matrice are în funcţie de rangul său un număr 
destul de mare de elemente nenule pentru a fi acordată o atenţie specială 
modului de stocare. De asemenea, proprietăţile algebrice ale matricei 
triunghiulare contribuie la alegerea acestui tip de matrice în rezolvarea 
sistemelor de ecuaţii compatibile cu acest tip de matrice: 



- suma şi diferenţa dintre două matrice triunghiulare reprezintă tot o 
matrice triunghiulară; 

- rezultatul înmulţirii a două matrice triunghiulare de dimensiune egală 
reprezintă tot o matrice triunghiulară; 

- valoarea determinantului unei matrice triunghiulară este dat de 
produsul elementelor de pe diagonala principală. 

De exemplu, matricea triunghiulară din figura 6.13 
  

2 9 3 3 
0 7 1 5 
0 0 10 2 
0 0 0 3 

 
Figura 6.13 Matrice triunghiulară 

 
este stocată, prin memorarea într-un masiv unidimensional a valorilor nenule 
şi prin indicarea indexului de început a valorilor de pe fiecare linie, figura 6.14. 
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Figura 6.14 Model de stocare a matricei triunghiulare 
 

Clasa MatriceTriunghiulara implementează această soluţie şi defineşte 
metode de acces direct la elementele matricei. 
 
class MatriceTriunghiulara 
{ 
private: 
 int * linii; //indexul fiecarei linii in lista de valori 
 int n;  //dimensiunea matricei patratice 
 double * valori; //valorile nenule din matrice 
 
public: 
 MatriceTriunghiulara(); 
 MatriceTriunghiulara(int); 
 virtual ~MatriceTriunghiulara(); 
 MatriceTriunghiulara(const MatriceTriunghiulara&); 
 
 bool setValoare(int i, int j, double valoare); 
 double getValoare(int i, int j); 
 
 double getDeterminant(); 
 int getDimensiune(){return n;}; 
 



 MatriceTriunghiulara operator+(MatriceTriunghiulara& ); 
 MatriceTriunghiulara operator=(MatriceTriunghiulara& ); 
 
 friend ostream& operator <<(ostream&, MatriceTriunghiulara&); 
}; 

 
Constructorul implicit iniţializează o matrice triunghiulară vidă, iar 

constructorul cu parametrii primeşte dimensiunea matricei pătratice. Pentru 
această abordare, valorile nenule sunt introduse de la tastatură de către 
utilizator parcurgând matricea pe linii. 
 
MatriceTriunghiulara::MatriceTriunghiulara() 
{ 
 linii = NULL; 
 n = 0; 
 valori = NULL; 
} 
 
MatriceTriunghiulara::MatriceTriunghiulara(int dim) 
{ 
 if(dim) 
 { 
  this->n=dim; 
  linii = new int[n]; 
  valori = new double[n*(n+1)/2]; 
  int indexLinie=0; 
  for(int i=0;i<n;i++) 
  { 
   linii[i]=indexLinie; 
   for(int j=i;j<n;j++) 
   { 
    cout<<"\n Element ["<<i<<"]["<<j<<"]:"; 
    cin>>valori[indexLinie+j-i]; 
   } 
   indexLinie+=n-i; 
  } 
 } 
 else 
 { 
  n = 0; 
  linii = NULL; 
  valori = NULL; 
 } 
} 

 
Constructorul de copiere al clasei şi metoda ce supraîncarcă operatorul 

= permit crearea de noi obiecte prin copierea valorilor unor matrice existent. 
Diferenţa dintre cele două metode este dată de situaţia în care se apelează 
fiecare metodă. Apelul operatorului = presupune existenţa ambelor obiecte şi 
programatorul trebuie să dezaloce zona de memorie a obiectului curent înainte 
de a face iniţializarea. 
 
MatriceTriunghiulara::MatriceTriunghiulara (const MatriceTriunghiulara& 
MT) 



{ 
 if(MT.n) 
 { 
  this->n=MT.n; 
  linii = new int[n]; 
  valori = new double[n*(n+1)/2]; 
  for(int i=0;i<n;i++) 
   linii[i] = MT.linii[i]; 
  for(int j=0;j<n*(n+1)/2;j++) 
   valori[j]=MT.valori[j]; 
 } 
 else 
 { 
  n=0; 
  linii = NULL; 
  valori=NULL; 
 } 
} 
 
MatriceTriunghiulara MatriceTriunghiulara::operator = 
(MatriceTriunghiulara &MT) 
{ 
 if(n) 
 { 
  delete[] linii; 
  delete[] valori; 
 } 
 if(MT.n) 
 { 
  this->n=MT.n; 
  linii = new int[n]; 
  valori = new double[n*(n+1)/2]; 
  for(int i=0;i<n;i++) 
   linii[i] = MT.linii[i]; 
  for(int j=0;j<n*(n+1)/2;j++) 
   valori[j]=MT.valori[j]; 
 } 
 else 
 { 
  n=0; 
  linii = NULL; 
  valori=NULL; 
 } 
 return *this; 
} 

 
Destructorul clasei gestionează dezalocarea zonei de memorie rezervată 

de un obiect de tip MatriceTriunghiulara prin alocarea dinamică a spaţiului 
aferent celor două masive linii şi valori. 
 
MatriceTriunghiulara::~MatriceTriunghiulara() 
{ 
 delete[] linii; 
 delete[] valori; } 

 



Pentru a asigura accesul la elementele matricei, într-un mod transparent 
şi apropiat cu abordarea directă dată de sintaxa matrice[i][j], clasa 
implementează metodele getValoare şi setValoare pentru a returna valoarea 
elementului de pe linia i şi coloana j, respectiv, pentru a iniţializa elementul. 
 
double MatriceTriunghiulara::getValoare(int i, int j) 
{ 
 if((i<0 || i>=n) || (j<0||j>=n)) 
 { 
  cerr<<"Index gresit !"; 
  return 0; 
 } 
 if(j<i) 
  return 0; 
 else 
  return this->valori[linii[i]+j-i]; 
} 
 
bool MatriceTriunghiulara::setValoare(int i, int j,double valoare) 
{ 
 if((i<0 || i>=n) || (j<0||j>=n)) 
  return false; 
 if(j>=i) 
 { 
  valori[linii[i]+j-i]=valoare; 
  return true; 
 } 
 else 
  return false; 
} 

 
În cazul metodei getValoare se returnează valoarea zero pentru orice 

element pentru care valoarea j este mai mare decât i deoarece aceste 
elemente se găsesc sub diagonala principală. 

Metoda setValoare validează coordonatele elementului de iniţializat 
deoarece nu este permisă setarea unui element al matricei ce se găseşte sub 
diagonala principală, caz în care matricea îşi pierde caracteristica de a fi 
triunghiulară. 

Pornind de la ipoteza că suma a două matrice triunghiulare generează o 
matrice de acelaşi tip, metoda care implementează această operaţie aritmetică 
adună elementele de pe poziţii comune fără a lua în considerare rezultatul 
acestora şi fără a lua în considerare valorile de sub diagonală. 

 
MatriceTriunghiulara MatriceTriunghiulara::operator + ( 
MatriceTriunghiulara& MT) 
{ 
 MatriceTriunghiulara rezMT; 
 if(this->n==MT.n) 
 { 
  rezMT.linii = new int[n]; 
  rezMT.valori = new double[n]; 
  rezMT.n=this->n; 
  for(int i=0;i<n;i++) 



  { 
   rezMT.linii[i] = this->linii[i]; 
   for(int j=0;j<n-i;j++) 
   { 
 rezMT.valori[rezMT.linii[i]+j]=valori[linii[i]+j]+MT.valori[MT.lini
i[i]+j]; 
   } 
  } 
 } 
 return rezMT; 
} 

 
Pentru a calcula determinantul matricei triunghiulare, ipoteza de lucru 

este dată de faptul că elementele de pe diagonala principală reprezintă prima 
valoare de pe fiecare linie a matricei. 
 
double MatriceTriunghiulara::getDeterminant(){ 
 double determinant = 1; 
 for(int i=0;i<n;i++) 
  determinant*=valori[linii[i]]; 
 return determinant; 
} 

  
Matricea de permutare este un masiv bidimensional în care fiecare linie 

sau coloană conţine o singură valoare unu, în rest elementele fiind nule. 
Matricea are această denumire deoarece este utilizată în operaţii algebrice 
pentru a permuta elementele unui vector conform unui model stabilit anterior. 
Dacă se consideră matricea MP din figura 6.15 şi vectorul X = 1,2,3,4,5 
 

0 0 0 1 0 
0 0 1 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 0 0 1 

 
Figura 6.15 Matrice de permutare de ordin egal cu cinci 

 
prin înmulţirea X * MP se obţine vectorul XP = 3,4,2,1,5, fapt ce evidenţiază că 
elementele vectorului au fost rearanjate conform poziţionării valorilor egale cu 
unu în matrice de permutare. 

Pentru a stoca o astfel de matrice, în care n elemente sunt egale cu unu, 
restul fiind zero, se defineşte clasa MatricePermutare. 
 
class MatricePermutare 
{ 
private: 
 int n;    //ordinul matricei 
 int* index_coloane; //indexul coloanei 
public: 
 MatricePermutare(); 
 ~MatricePermutare(); 



 MatricePermutare(const MatricePermutare&); 
… 

}; 

 
Valorile memorate pentru a reprezenta corect matricea de permutare 

sunt reprezentate de: 
- rangul matricei pătratice; 
- indexul coloanei pe care se găseşte valoarea unu de pe fiecare linie; 

deoarece există o singură valoare nenulă pe fiecare linie şi coloană, 
poziţia valorii în cadrul vectorului index_coloane indică linia 
corespondentă. 

Figura 6.16 descrie vectorul index_coloane asociat matricei de permutare din 
figura 6.15. 
 

 

n = 5 

3 2 0 1 5 

ordinul matricei pătratice 

pe linia i = 2, valoarea 1 se găseşte pe 
coloana j = 0  

 
Figura 6.16 Model de stocare a matricei de permutare. 

 
Într-o matrice de permutare de ordin n, numărul de valori nenule este 

egal cu n, iar în cazul în care această valoare depăşeşte nivelul trei, matricea 
este validată ca fiind o matrice rară datorită ponderii mici a valorilor nenule. 

 
 
6.8 Estimarea parametrilor unei regresii statistice folosind 

clasa MR 
  
Se consideră datele din tabelul 6.7 ce caracterizează cinci întreprinderi 

din punctul de vedere al productivităţii y, al numărului de utilaje de mare 
performanţă deţinute x1 şi al veniturilor suplimentare acordate salariaţilor x2. 
Se doreşte determinarea unei funcţii care să caracterizeze dependenţa dintre 
productivitate şi celelalte două variabile considerate independente. 

 
Tabelul nr. 6.7 Evoluţia indicatorilor y, x1 şi x2 într-o întreprindere 
 
y – productivitatea muncii (creşteri procentuale)  1 2 5 6 7 
x1 – utilaje de mare randament (bucăţi) 2 4 4 4 5 
x2 – venituri suplimentare (mil. lei) 1 1 3 5 5 

 
 Pentru a specifica forma funcţiei, se analizează pe cale grafică 

dependenţa variabilei efect(y) în raport cu fiecare dintre variabilele cauzale. 
 



y 

x2 









y 

x1




    

  
    



 
 
 

Figura 6.17 Dependenţa y= f(x1), y= f(x2) 
 
 Întrucât norul de puncte din fiecare reprezentare grafică sugerează o 

linie dreaptă, specificăm modelul astfel: 
 

yi = a0 + a1x1i + a2x2i + ui   (6.38) 
 
unde ui reprezintă o variabilă “reziduală” ce caracterizează influenţa altor 
factori asupra variabilei efect y, factori care din diverse motive nu pot fi luaţi în 
considerare. 

 Dacă simbolizăm “ y ” valorile “ajustate”, rezultate în urma aplicării 
modelului liniar, specificăm modelul astfel: 

 

2i21i10i xaxaay     (6.39) 

 
 Relaţia anterioară se scrie pentru fiecare set de valori prezentate în 

tabelul 6.7, rezultând: 
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 (6.40) 

 
 Aşadar: 
 

Y = XA + U      (6.41) 
 

iar 
 

AXY       (6.42) 
 
 Determinarea dependenţei dintre variabila efect şi variabilele cauză 

însemnă determinarea valorilor numerice ale parametrilor 10 a,a  şi 2a . În acest 



scop se utilizează metoda celor mai mici pătrate. Această metodă presupune 
minimizarea expresiei: 

 


t

2
tu
     (6.43) 

 
adică, matriceal, U’*U. Dar: 

 

   AXYAXYUU   (6.44) 
 

unde prin U' s-a notat transpusa matricei U. 
 În [Peci94] se demonstrează că prin minimizarea relaţiei de mai sus se 

ajunge la expresia: 
 

  YXXXA 1  

 (6.45) 
 

 O determinare cât mai precisă a matricei parametrilor unei regresii 
presupune existenţa unui număr foarte mare de date, adică un număr mare de 
linii în matricea X. În multe cazuri practice valorile acestor date sunt nule, fapt 
ce justifică implementarea relaţiei anterioare pe o structură de matrice rare. 
Având deja definiţi operatorii de transpunere, înmulţire şi inversare, 
implementarea relaţiei de mai sus presupune scrierea unei singure linii de cod: 

 
      Y*X!*().X*X!A Inversa  (6.46)  

 
 Aşadar, pentru aflarea matricei A  sunt necesare două operaţii de 

transpunere, trei înmulţiri şi o inversare. Matricele X şi Y asupra cărora se 
operează au în multe dintre cazurile practice o densitate foarte mică, astfel că 
este pe deplin justificată folosirea unor structuri de memorare specifice 
matricelor rare. 

 Asistăm în prezent la un fenomen care tinde să atingă tot mai multe 
domenii de activitate. Necesitatea  de a  cunoaşte cât mai precis anumiţi 
factori sau parametri ce caracterizează domeniul respectiv, care până nu de 
mult erau fie consideraţi aleatori, fie nu se punea problema determinării lor, 
considerată a fi imposibilă. Cunoaşterea acestor factori oferă o descriere mai 
detaliată a sistemului în care se lucrează, permiţând în acest fel o mai bună 
activitate de control şi comandă a acestuia. 

 În cele mai multe dintre cazuri baza de calcul a acestor factori o 
constituie statistica matematică şi teoria probabilităţilor, ceea ce conduce la 
necesitatea rezolvării unor probleme liniare de foarte mari dimensiuni. 
Caracterul de raritate al structurilor implicate în rezolvarea problemelor, 
datorat caracteristicilor reale ale sistemelor, la care se adaugă necesitatea unei 
rezolvări rapide, în concordanţă cu dinamica crescândă a sistemelor actuale, 
justifică pe deplin introducerea în aplicaţiile informatice asociate a unor 
structuri de date adaptate acestor particularităţi. 



 Softul orientat spre lucrul cu matrice rare exploatează caracterul de 
raritate al structurilor manipulate, oferind un dublu avantaj: memorie şi timp. 
În ultimii ani memoria nu mai constituie o problemă, însă timpul necesar 
calculelor, odată cu apariţia sistemelor în timp real, se dovedeşte a fi tot mai 
mult o resursă critică. 

 Referitor la lucrul cu matrice în general, în cadrul unui sistem în care 
timpul reprezintă o resursă critică, există posibilitatea de a realiza un soft care 
să facă o evaluare anterioară calculelor asupra densităţii matricei, şi, în funcţie 
de aceasta, să decidă asupra structurilor de date ce vor fi folosite pentru 
memorare şi efectuarea calculelor, astfel încât timpul afectat calculelor să fie 
minim. 
 


	6. MATRICE RARE
	6.1 Concepte de bază
	6.2 Memorarea matricelor rare
	6.3 Determinarea gradului de umplere al unei matrice rare
	6.4 Software orientat spre lucrul cu matrice rare
	6.5 Adunarea, scăderea şi transpunerea
	6.6 Înmulţirea şi inversarea matricelor rare
	6.7 Tipuri particulare de matrice rare
	6.8 Estimarea parametrilor unei regresii statistice folosind clasa MR


